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ABSTRACT

Sharan, Umang. M.S., Purdue University, August, 2008. A Framework for Exploiting
Temporal Variations in Relational Domains . Major Professor: Jennifer Neville.

Many relational domains contain temporal information and dynamics that are

important to model. As an example, consider scientific publication networks—paper

publication events occur over time and coauthor relationships form and develop over

time. The temporal aspects of such data can reveal relevant relationships and indi-

cate relationship strength.

In this work, we focus on incorporating temporally-varying relationship informa-

tion in predictive models of attributes. By analyzing the temporal dynamics, we aim

to identify and emphasize more influential relationships, thus improving the perfor-

mance of models that consider the characteristics of related entities during prediction.

We present a framework that models dynamic relational data with a two-phase pro-

cess, first summarizing the temporal-relational information with kernel smoothing,

and then moderating attribute dependencies with the summarized relational infor-

mation. We evaluate our approach on three real-world datasets and show that it

results in significant performance gains compared to two baseline approaches that

ignore the temporal aspects of the data.
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1 INTRODUCTION

Recent research has demonstrated the utility of modeling relational information

for domains such as web analytics [1], marketing [2] and fraud detection [3]. This

work has demonstrated that incorporating the characteristics of related instances

into statistical models improves the accuracy of attribute predictions. One key reason

for these improvements is the presence of autocorrelation or homophily in relational

data. Homophily refers to the tendency of like to associate with like [4] and auto-

correlation refers to correlation of the values of an attribute between pairs of related

instances [5]. For example, fraud exhibits autocorrelation—if we know one person is

involved in fraudulent activity, then his associates have increased likelihood of being

engaged in misconduct as well [6]. Similarly, webpage topics are often autocorrelated,

which means that two hyperlinked pages are more likely to share the same topics than

two randomly selected web pages [7]. The presence of homophily and autocorrela-

tion offers a unique opportunity for relational learning techniques to improve model

performance because the similarity among related instances can be exploited by the

model to improve predictions.

A number of techniques have been developed to successfully exploit dependencies

in relational domains (see e.g., [8]), but this work has focused primarily on model-

ing static relational data. For the numerous relational domains that have temporal

dynamics, researchers have generally analyzed static snapshots of the data, which

consist of all the objects, links, and attributes that have occurred up to and including

time t [1–3]. This approach ignores the temporal information present in the data

and limits the applicability of the models. In many datasets there are likely to be

dependencies between the temporal and relational information that can be exploited

to improve model performance. For example, in fraud detection a pair of individuals

that communicate regularly over time may be more likely to exhibit autocorrelation
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than a pair of individuals that communicate heavily but only for a brief time period.

Similarly, in marketing domains customers that have recently purchased a product

may be more likely to advertise that product to their friends than customers that

purchased the product in the more distant past. To date, there are few available data

mining tools that can simultaneously exploit temporal and relational dependencies in

the data.

Relational data may exhibit temporal dynamics in a number of dimensions. First,

the instances in the data may appear and disappear over time. For example, web

pages are created as web sites are developed, expanded, and modified over time. It

may be important to model instance age if recently added instances exhibit different

characteristics than older instances (e.g., new vs. established accounts). Second, the

links (or relations) in the data may represent events at a particular time. If this is

the case, then the time associated with the event may be important to model (e.g.,

the publication date of a scientific paper). In addition, multiple links between two

instances may occur over time. If this is the case, properties of the sequence of links

may be important to model (e.g., how often a pair of coauthors publish together).

Third, the attribute values in the data may change over time. For example, a sensor

may be recording the position of an object moving through a building and this may

inform predictions about the properties of the object.

Recent work in statistical relational learning has only just begun to investigate

these temporal dimensions. Some initial work has focused on transforming temporal-

varying links and objects into aggregated features [3] and other work has focused

on modeling the temporal dynamics of time-varying attributes [9]. There have been

some efforts to model temporally-varying links to improve automatic discovery of

relational communities or groups [10, 11] but this work has not attempted to exploit

the temporal information in a classification context.

The goal of this work is to improve attribute prediction in dynamic domains by

incorporating time-varying links into statistical relational models. One motivation for

modeling time-varying links is the identification of influential relationships in the data.
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Since much of the success of relational models is predicated on the correlation between

attribute values of linked instances, a method that prunes away spurious relationships

and highlights stronger relationships will lead to more significant increases in model

performance.

We conjecture that the temporal link information will be useful for disambiguating

relationships in this fashion. In particular, we look for patterns of temporal locality

and temporal recurrence to identify the relationships that are more likely to exhibit

autocorrelation dependencies. Temporal locality refers to the notion that events in the

recent past are more influential than events in the distant past. Temporal recurrence

refers to the notion that a regular series of events between two instances is more likely

to indicate a stronger underlying relationship than an event isolated in time.

As illustration, consider the following example from the Internet Movie Database

(IMDb; www.imdb.com). Table 1.1 lists the set of movies that actors Owen Wilson

and Ben Stiller have co-starred in the last seven years and the gross earnings (ad-

justed for inflation) of those movies. This example indicates that recent successful

relationships—‘Meet the Fockers’ and ‘Starsky & Hutch’—outweigh less successful

relationships in the past—‘Zoolander’ and ‘The Royal Tenenbaums’—for predicting

the success of ‘Night at the Museum’.

Table 1.1
Example temporal pattern in IMDb

Movie Release Earnings

Year ($ million)

Zoolander 2001 54

The Royal Tenenbaums 2001 62

Starsky & Hutch 2004 99

Meet the Fockers 2004 315

Night at the Museum 2006 264
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As another example, consider the Cora database of computer science research

papers extracted automatically from the web [12]. Each paper has an associated

topic and citations relating it to other papers that have been published in the past.

Figure 1.1 shows the autocorrelation between the topics of papers published in the

year 1996 with the topics of the papers they cite in the past. The x-axis represents the

time interval between 1996 and the year of publication of the cited papers. Observe

that the correlation between topics decreases as the time lag increases. Thus, the

topics of recent references are likely to be better indicators than the topics of references

that were published farther in the past.
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Figure 1.1. Temporal variation of topic autocorrelation in Cora

In this work, our aim is to analyze the temporal sequences of interactions between

pairs of instances to identify the nature of their relationships and then incorporate

this information to moderate the influence of related instances in predictive mod-

els of attributes. To do this, we propose the Time Varying Relational Classifier

(TVRC) [13, 14], a novel framework for incorporating time-varying link information

into statistical relational models. TVRC uses a two-step process that first trans-

forms a dynamic relational graph into a static weighted summary graph using kernel

smoothing. The second phase then incorporates the static link weights into a modified

relational classifier to moderate the influence of attributes throughout the relational
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data graph. We evaluate our approach on three real-world datasets and show that it

achieves significant improvements in accuracy compared to two baseline models that

ignore the temporal dimension of the data.

The remainder of this thesis is organized as follows: Section 2 outlines the back-

ground and related work in statistical learning in temporal relational domains. Section

3 discusses the details of the TVRC framework and its implementation. Section 4

describes the experimental evaluation results. Section 5 concludes and suggests some

possible future research directions.
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2 BACKGROUND

This work focuses on statistical learning in temporal relational domains. Many

relational domains like fraud detection, web analysis and bioinformatics have temporal

variations over time. There are two aspects to temporally changing relational data—

temporally varying attributes and temporally varying link structure.

Temporal changes in attributes have been exploited in the past in non-relational

contexts to improve prediction accuracies in time series models. Autoregressive mod-

els exploit temporal autocorrelation to predict the value of a variable X at time t

based on the value of X at previous time steps [15–17]. These models are often used

in econometrics to model time-varying data such as stock prices and interest rates

(see [18]). An autoregressive model AR(ρ) of order ρ is defined as:

Xt = c+

ρ∑
i=1

βiXt−i + εt

where β1, · · · , βρ are the parameters of the model, c is a constant and εt is a error

term. Autoregressive models typically represent dependencies by including a lagged

value of the response variable as a regressor. In other words, they model the variable

at the current time step as a parameterized function of the past.

An alternative way to model temporally changing attributes is to model the vari-

ables explicitly as a time-series whereby each observation in the series depends on a

hidden state which is correlated over time. Sequential linear series models like Hidden

Markov Models (HMM) define a probability distribution over sequences as follows:

P{Xt, Yt} = P (X1)P (Y1|X1)
T∏

t=2

P (Xt|Xt−1)P (Yt|Xt)

where {Yt} are the observed variables and {Xt} are the corresponding hidden state

variables. Figure 2.1 shows the graphical representation of such a sequential model
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and the dependencies among the Xt. The dependencies follow a first-order Markov as-

sumption where Xt depends only on the state Xt−1 at the previous time step. HMMs

and other sequential models are used for a variety of applications in speech recog-

nition, filtering and control applications, and protein sequence recognition. Recent

work in Dynamic Bayesian Networks (DBN) [19, 20] has extended these sequential

models to use arbitrary Bayesian networks at each time step. However, exact proba-

bilistic inference is generally intractable in DBNs and approximate inference methods

have to be used instead.

Figure 2.1. An example sequential Bayesian network.

Temporal changes in link structure have been modeled by Cortes et al. [6,21] and

Hill et al. [11, 22]. This work has used Communities of Interest (COI) to summarize

and represent temporally varying link structure in a novel way to facilitate large-scale

analysis of dynamic networks such as telecommunications call networks. It addressed

the following major challenge—to process massive volumes of data efficiently while

accounting for the dynamic nature of transactional data by capturing the most rel-

evant information and eliminating less useful and spurious information. The COI

representation captures relational changes in a concise way that evolves smoothly

through time. Cortes et al. [6,21] use this representation for fraud detection analysis

in telecommunication networks.

Another approach towards modeling time-varying relational networks has used

more complex sequential linear models [23, 24]. This work has modeled tempo-

ral sequences of network structures as first order Markov chains whereby each net-

work instance is assumed to be generated by an Exponential Random Graph Model



8

(ERGM) [25]. The probability distribution function for a sequence of network in-

stances N = {G1, G2, · · · , GT} is defined as:

P (N) =
1

Z(θ)
exp{θ′ψ(N)}

Using a first-order Markov assumption that the graph at time t only depends on the

graph at time (t− 1), we can simplify the model as follows:

P (Gt|Gt−1) =
1

Z(θ,Gt−1)
exp{θ′ψ(Gt, Gt−1)}

MCMC estimation techniques have been developed to learn the parameters of these

models but this approach is not tractable for large datasets or for models with higher-

order Markov assumptions. Further, this model is designed for link prediction tasks

and is not geared for attribute prediction tasks.

In the area of statistical relational learning, some recent work has focused on

modeling both attributes and links changing over time. Sanghai et al. [9] proposed

the Dynamic Probabilistic Relational Model (DPRM) for modeling temporal rela-

tional domains. DPRMs combine Probabilistic Relational Models (PRM) [26–28]

with DBNs [19]. In essence, DPRMs are a series of PRMs for each time step linked

together through temporal slot chains following the first-order Markov assumption.

For any time window T , the joint distribution over the instantiations of the relational

schema I at different time steps (I0, ..., IT ) is given by:

P (I0, ..., IT ) = P0(I0)
T∏

t=1

P (It|It−1)

DPRMs are computationally very intensive for both learning and inference due to the

large space of possible dependencies. In addition, DPRMs use a restrictive first-order

Markov assumption which may not be sufficient to capture the notions of temporal

locality and temporal recurrence that we focus on in this work.

McGovern et al. [29] recently proposed Spatio-Temporal Relational Probability

Trees (SRPTs) as an extension to Relational Probability Trees (RPTs) [30] to incor-

porate temporal variations in relational attributes and links. SRPTs are designed for



9

relational domains where concepts vary based on small spatial and temporal scales

within the data (e.g., weather prediction). They model the temporal relational in-

formation by expanding the set of features explored in the learning algorithm. For

example, the feature set includes Temporal Exists, which assesses whether an object

or a link lasted at least t time steps, and Relative Count, which splits data on the

relative change in the number of matching items (count) within a time window. Thus,

SRPTs are able to model some aspects of time-varying link structure (i.e., local de-

gree changes) as well as time-varying attributes in relational data. Although adding

temporal components to the feature space of relational decision trees provides the

flexibility to model temporal variations in both attributes and relationships, it results

in an exponential number of possible features which may be infeasible to explore for

large datasets. McGovern et al. make this tractable by defining a restricted set of

temporal relational features manually, based on domain knowledge specific to weather

prediction tasks.

In this work, we build on the COI [6] representation to capture temporal changes

in relational structure to improve attribute prediction in domains where the link

structure is varying with time. Our approach uses the temporal information in a

novel way to improve attribute prediction in relational domains. We move beyond

the restrictive Markov assumptions of the past work and focus on summarizing the

temporal information before incorporating it into the models. This facilitates reason-

ing about patterns of temporal locality and temporal recurrence that we believe are

crucial for identifying and exploiting influential relationships in the data.
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3 TVRC FRAMEWORK

We consider relational data represented as an attributed multi-graph—more specif-

ically, as a directed, attributed graph G = (V,E), with V (nodes) representing ob-

jects and E (edges) representing relations1, having one or more connected compo-

nents. To elaborate, the nodes V represent objects in the data (e.g., people, or-

ganizations, events) and the edges E represent relations among the objects (e.g.,

works-for, located-at). Each node vi ∈ V and edge ej ∈ E are associated with a type

G(vi) = gvi
, G(ej) = gej

. Each object or link type g ∈ G has a number of associated

attributes Xg = (Xg
1 , ..., X

g
m) (e.g., age, gender).

When relational data has a temporal component, there are three aspects of the

data that may vary over time. First, attribute values may vary over time Xi =

(Xi1 , Xi2 , ..., Xit). Second, relationships may vary over time. This results in a different

data graph Gt = (V,Et) for each time step t, where the nodes remain constant but

the edge set may vary (i.e., Eti 6= Etj for some i, j). Third, objects existence may

vary over time (i.e., objects may be added or deleted). This is also represented as a

set of data graphs G′
t = (Vt, Et), but in this case both the objects and links sets may

vary.

Initial efforts to incorporate time into statistical relational models have focused

on the first and third cases. For domains where attributes vary over time, Sanghai

et. al [9] have extended probabilistic relational models (PRMs) [26] in a manner

similar to dynamic Bayes networks [20], rolling out a separate PRM for each time

step and modeling the dependencies of attribute values in one time step to the next.

For domains where the number of objects is uncertain and can vary, Milch et. al [31]

have developed a Bayesian logic modeling approach to reason about possible worlds

1There may be more than one edge between a pair of nodes.
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with varying numbers of objects. To our knowledge, there are no statistical relational

models that exploit temporal information in domains where the links change over

time.

In this work, we focus on the case where the links vary over time and outline a

framework for such domains. For example, consider the case where we have a set

of people coauthoring scientific papers. In each year, there will be different sets of

people coauthoring different papers. This is represented in Figure 3.1. The nodes

(authors) remain constant but the edges change in each time step, representing the

coauthor and citation events that have occurred in each year.

Figure 3.1. Temporally varying relationships over time.

Our approach, the Time Varying Relational Classifier (TVRC), is a two-phase pre-

diction framework, which consists of a graph summarization phase and a relational

classification phase. The key idea of TVRC is to exploit the temporal influence of

relationships across snapshots by summarizing them suitably and utilizing the sum-

marized values in a modified relational classification model. Figure 3.2 illustrates the

general framework of TVRC approach. Consider a dataset of research papers with

reference and authorship information. The summarization phase in Figure 3.2 sum-

marizes different snapshots of the data which correspond to the papers published in

different years. The relational model used in the classification phase exploits the edge

weights wi learnt during the graph summarization phase to produce more accurate

predictions. We now describe each phase in more detail.
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Figure 3.2. General framework for TVRC.

3.1 Graph Summarization

The graph summarization phase summarizes a temporal sequence of relational

graphs into a weighted summary graph. Let Gt = (Vt, Et,Wt) be the relational graph

at time step t, where Wt = {wij = 1 : eij ∈ Et} is a set of unit weights on the edges of

Gt. Let {G1, G2, · · · , Gn} be the temporal snapshots of the data at consecutive time

steps t, from t = 1 through n. Each temporal snapshot Gt contains the relationships

between the objects in the dataset at time t. New objects and links may have been

added or deleted from Gt−1 to Gt. Figure 3.1 shows three different temporal snapshots

depicting the varying relationships among a set of authors based on the papers they

published in each time step.

We define the summary graph GS
t = (V S

t , E
S
t ,W

S
t ) at time t as a weighted sum of

the snapshot graphs {G1, G2, · · · , Gt}

V S
t = V1 ∪ V2 ∪ · · · ∪ Vt

ES
t = E1 ∪ E2 ∪ · · · ∪ Et

W S
t = α1W1 + α2W2 + · · ·+ αtWt

where Vt and Et are the vertex and edge sets respectively of the temporal snapshot Gt

andWt are the unit weights associated with the edges ofGt. The α’s are weights which
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determine the contribution of each temporal snapshot in the summary graph. More

specifically, we formulate the graph summarization as a kernel smoothing operation:

W S
t =

t∑
i=1

K(Gi; t, θ)

where K is an appropriate kernel function with parameter θ. Representing the sum-

mary operation through kernel smoothing gives us the freedom to explore and choose

a suitable weighing scheme from a wide range of kernel functions, so as to best capture

and exploit the temporal variations in the subsequent classification phase.

The graph summarization phase of TVRC depends on the smoothing kernel ap-

plied on the snapshot graphs. From Figure 1.1, it is clear that past information loses

its influence on the present attributes rapidly. Thus, we postulate that a paper’s topic

is more likely to be influenced by the topic of a reference that has been published

recently rather than one that was published farther in the past. In addition, we

postulate that an author is more likely to currently be working on a topic similar to

those of his recent coauthors than those of his past coauthors. To exploit these ideas

of temporal locality and temporal recurrence, we employ a weighting scheme based

on decaying kernels. We explore the following three kernels for summarization—

exponential kernel, linear kernel, inverse linear kernel.

Figure 3.3. Example decay of a link event that occurs in 1998. The
solid curve shows the linear kernel, the uniformly dashed curve shows
the inverse linear kernel, while the non-uniformly dashed curve shows
the exponential kernel.
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3.1.1 Exponential Kernel

The exponential kernel weighting scheme is similar to the approach used by Cortes

et al. [6] for graph summarization. The kernel function KE is defined as:

KE(Gi; t, θ) = (1− θ)t−iθWi

The exponential kernel weights the recent past highly and decays the weight rapidly

as time passes. The kernel smoothing operation on the input temporal sequence {G1,

G2, · · · , Gt} can also be expressed as a recursive computation on the weights {W1,

W2, · · · , Wt} through time. This means the summary graph at time t can be written

as a weighted sum of the graph at time t and the summary graph at time (t − 1)

where the summary parameter θ ∈ [0, 1] specifies the influence of the current time

step and to is defined as the initial time step in the time window.

W S
t =

(1− θ)W S
t−1 + θWt if t > to

θWt if t = to

Figure 3.3 shows an example of how quickly the unit weight for an event in 1998

decays over time in the summary graph.

3.1.2 Linear Kernel

The linear kernel KL is defined as:

KL(Gi; t, θ) = θWi(
t∗ − ti + 1

t∗ − to + 1
)

where t∗ is defined as the final time step considered in the time window. The linear

kernel decays more gently (see Figure 3.3) and retains the historical information

longer. Again, the summary graph at time t is the weighted sum of the graph at time

t and the summary graph at time (t− 1), and the summary parameter θ ∈ [0, 1] and

is defined as:

W S
t =

( t∗−t
t∗−t+1

)W S
t−1 + θWt if t > to

θWt if t = to
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3.1.3 Inverse Linear Kernel

The inverse linear kernel KIL lies between the exponential and linear kernels when

moderating the contribution of historical information and is defined as:

KIL(Gi; t, θ) = θWi(
1

ti − to + 1
)

while the weights if the summary graph are recursively defined as:

W S
t =

( t−to
t−to+1

)W S
t−1 + θWt if t > to

θWt if t = to

Regardless of the kernel employed, the above set of equations recursively define

the summary weights W S
t at time t as the weighted average of the summary weights

W S
t−1 at time (t− 1) and the weights Wt at time t.

Figure 3.4. Example of graph summarization with kernel smoothing.

Figure 3.4 shows an example summarization of relationships between authors pub-

lishing together papers over two years. The dotted edges in the summary graph denote

relationships weakened over time, thick solid edges denote frequent relationships that

are strengthened over time, while thin solid edges denote relationships freshly occur-

ring in the present time step. Note that our approach is general enough to handle

cases when more than one link exists between a pair of nodes at a given time step.

However, it does assume that if there are multiple links, they are all of the same type

and thus can be summarized into a single relationship. For example, if two authors A
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and B publish two papers and administer a grant together in year t, there will be one

summary edge between A and B even though the coauthor links and the co-PI links

do not necessarily indicate the same type of relationship between A and B. This case

can be easily dealt with by partitioning the graph into a separate graph for each link

type g before summarization.

3.2 Weighted Relational Classification

The second phase of TVRC algorithm is the Relational Classification Phase. Once

we have summarized the relational data, we learn a predictive model on the summa-

rized data, exploiting the temporal variations to improve the prediction results. In

this work, we extend the Relational Bayes Classifier (RBC) [32] and the Relational

Probability Tree (RPT) [30] to incorporate link weights from the summary graph into

the models. Any relational model that can be extended to use weighted instances is

suitable for this phase. In this work, we chose to focus on RBCs and RPTs because

of their simplicity and efficiency.

3.2.1 Weighted Relational Bayes Classifier

RBCs extend naive Bayes classifiers to relational settings by treating heteroge-

neous relational subgraphs as a homogenous set of attribute multisets. For example,

when modeling the dependencies between the topic of a paper and the topics of its ref-

erences, the topics of those references form multisets of varying size (e.g., {NN, GA},

{NN, NN, RL, NN, GA}). The RBC models these heterogenous multisets by assum-

ing that each value of the multiset is independently drawn from the same multinomial

distribution. This approach is designed to mirror the independence assumption of the

naive Bayesian classifier [33]. In addition to the conventional assumption of attribute

independence, the RBC also assumes attribute value independence within each mul-

tiset.
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More formally, for a class label C, attributes X, and related items R, the RBC

calculates the probability of C for an item i of type G(i) as follows:

P (Ci|X, R) ∝
∏

Xm∈XG(i)

P (X i
m|C) ·

∏
j∈R

∏
Xk∈XG(j)

P (Xj
k|C) · P (C) (3.1)

In equation 3.1, each attribute value is given an implicit weight of 1. In order to

incorporate the weights from the summary graph we modify this equation to define

the weighted RBC as follows:

P (Ci
t |X, R) ∝

∏
Xm∈XG(i)

P (X i
m|C) ·

∏
j∈R

∏
Xk∈XG(j)

wt
ij · P (Xj

k|C) · P (C) (3.2)

where wt
ij is the product of the weights in the summary graph GS

t on the path from

the target node i to the related node j. Figure 3.5 shows how the weighted RBC

incorporates edge weights into its multiset representations.

Figure 3.5. Modification to RBC multisets to include summary weights.

3.2.2 Weighted Relational Probability Trees

RPTs extend standard probability estimation trees to a relational setting in which

data instances are heterogeneous and interdependent. The algorithm for learning the

structure and parameters of a RPT searches over a space of relational features that
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use aggregation functions (e.g. AVERAGE, MODE, COUNT) to dynamically propo-

sitionalize relational data multisets and create binary splits within the RPT. Similar

to RBCs, each attribute value is implicitly given a weight of 1 in the RPT feature

construction and evaluation phase. In order to incorporate the weights from the sum-

mary graph, we define a weighted RPT by modifying the counts of the attribute value

when computing the RPT aggregate functions. Figure 3.6 illustrates how weighted

RPT feature calculation differs from the standard RPT—in particular, while calcu-

lating the mode of the linked topics, the weighted RPT may end up calculating a

different feature value based on the link weights in the multiset.

Figure 3.6. Modification to RPT feature calculation to include summary weights.

In both the RBC and the RPT, the weights can be viewed as probabilities that a

particular relationship in the data is still active at the current time step t, given that

the link was observed at time (t − k). For exponential kernel, this corresponds to a

geometric distribution with parameter θ, which specifies the probability that a link

occurred k time steps in the past.
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3.3 Learning

The weighted RBC uses standard maximum likelihood learning with Laplace cor-

rection for zero-values. More specifically, the sufficient statistics for each conditional

probability distribution are computed as weighted sums of counts, based on the edge

weights from the summarization phase. The weighted RPT uses the standard RPT

learning algorithm except that the aggregate functions are computed after weigh-

ing each attribute value count with the corresponding edge weight learnt from the

summarization phase.

We use k-fold cross validation to determine the summary parameter θ to be used

during the graph summarization phase. We divide the training sample into k folds

by sampling the instances independently. We then learn a TVRC by training it on

(k − 1) folds and applying the model on the remaining fold using a range of values

of θ. In the experiments below, we consider 10 values of θ in the set {0.1, 0.2, ..., 1.0}

and k=10. The θ value that achieves the maximum cross-validated accuracy on each

fold is selected and the average of these values is used as the final θ value.

The time complexity of learning the RBC and RPT models is O((t+m)E), where

t is the number of time steps, m is the number of attributes used for prediction,

and E is the number of edges in the summary graph GS
t . The time complexity for

the summary graph computation is O(tE) since each edge must be considered in

each summary calculation. In the worst case, when the graph is close to completely

connected, the number of edges will be O(V 2). However, in many relational datasets,

node degree is bounded by a constant (i.e., a node’s neighbors do not grow as a

function of dataset size), thus E << V 2 in practice. The time complexity for the

RBC learning algorithm as well as the RPT learning algorithm is O(mV ) where V is

the number of target nodes (i.e., instances being predicted) assuming that the number

of neighbors for each node (used to get a particular set of attribute values) can be

bounded by a constant.
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3.4 Prediction

For prediction, the TVRC computes the summary graph GS
t at time t—the time

step at which the model is being applied. Then we apply the model learned for time

(t− 1) to GS
t . The prediction phase of RBCs and RPTs is appropriately augmented

to incorporate the link weights W S
t from GS

t .
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4 EXPERIMENTS

We report the results of TVRC on three real world datasets. The experiments

reported below evaluate the performance and prediction accuracy of TVRC against

baseline models that ignore the temporal component of the snapshot data. The rest

of the section is organized as follows: First, we describe the different datasets used for

empirical evaluation of TVRC. Thereafter, we define the different models compared

in the experiments, and finally we present an analysis comparing the performance of

different models based on the results of the experiments.

4.1 Data

We considered three real world datasets for our experiments. The Internet Movie

Database (IMDb) contains movie release information, including their earnings, actors,

studios, directors, etc. The Cora database contains authorship and citation informa-

tion about computer science research papers extracted automatically from the web.

The Reality Mining database contains telephone call and mobile device proximity

records amongst a set of students, faculty, and researchers at MIT. Table 4.1 lists the

number of objects and/or links present in each dataset. We describe each dataset in

more detail below.

4.1.1 IMDb

The Internet Movie Database (IMDb) is one of the largest publicly available

databases of information about movies, actors, directors, studios, etc. The database

is available as compressed text files at http://imdb.com/interfaces.
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Table 4.1
Datasets used for empirical evaluation.

IMDb CORA Reality Mining

Movies: 5,301 Papers:16,153 People: 97

Actors: 126,641 References: 29,603 Devices: 20,795

Producers: 11,973 Authors: 21,976 Telephone Call

Studios: 391 Edges: 443,553

Directors: 2,535 Device Proximity

Editors: 2,186 Edges: 285,512

Cinematgrs: 1,518

Time Window: Time Window: Time Window:

1981-2007 1981-1998 May-Nov 2004

For this work, we selected the set of movies that were released in the time period

1981-2007. We did not consider any movies from the genres Television or Adult.

Each movie has an attribute ‘Gross earnings’, which records the amount of money

the movie grossed in total. We adjusted these values to account for inflation and

make the values comparable across different years. Furthermore, we only considered

movies with (adjusted) gross earnings > $1mil.

Table 4.2
Example aliases for Columbia TriStar.

Movie Name Studio

Between Brothers(1999) (
√

) Columbia TriStar Television [us]

Channel Umptee-3(1997) (
√

) Columbia TriStar Children’s Television [us]

Fun Factory, The(1976) (
√

) Columbia Pictures Television [us]

Shipmates(2001) (
√

) Columbia TriStar Domestic Television [us]

Jeremiah(2002) (X) Province of British Columbia Production ...
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Figure 4.1. The relational schema for the IMDb dataset. The link
weights ‘da weight’, ‘aa weight’ and ‘sa weight’ are computed during
graph summarization. The attribute ‘wt earnings’ on Studios and
other objects is computed by summarizing the gross earnings of the
Movies(M) related to that object in the past.

In addition, it was necessary to preprocess the data to consolidate duplicate names.

In particular, we focused on identifying the primary studios associated with each

movie. We used pattern matching and manual filtering to merge duplicate studios

while being careful not to merge similar (but not the same) entities as in Table 4.2.

Further, we considered only the studios which produced at least ten movies since

1981.

The IMDb dataset is quite extensive but for the purpose of our experiments, we

pruned it to conform to the schema shown in Figure 4.1 defined as a Qgraph schema

[34]. The attributes associated with each object in Figure 4.1 are the attributes that

were supplied to the relational classfication model. The classification task was to

predict whether a movie would be a blockbuster (Gross earnings > $90mil). The

attribute ‘wt earnings’ on all objects (except Movie) represents the weighted average

earnings based on summarization of the movies of that object in past time steps—

thus, there is a ‘wt earnings’ attribute corresponding to each time step in TVRC.

Further, the Actor-Actor, Actor-Director, Actor-Studio links and their respective
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link weights namely ‘aa weight’, ‘da weight’ and ‘sa weight’ are generated during the

graph summarization phase. Note that we use the class label on related objects for

prediction but only the labels corresponding to the previous time steps are available

to the model (this also applies to the other two datasets).

4.1.2 Cora

Cora is a database of computer science research papers with the respective citation

and author information. The dataset is available at http://www.cs.umass.edu/∼mccall

um/code-data.html. The relational schema is given in Figure 4.2. The attributes as-

sociated with each object are those supplied to the relational classification model

while the summary weights on the Paper-Citation and Author-Author links, namely

‘pc weight’ and ‘aa weight’, are generated by the graph summarization phase. The

prediction task here was to predict the whether a paper is a machine learning paper

given the topic of its references and the most prevalent topics its authors are working

on through collaborations with other authors.

Figure 4.2. The relational schema for the Cora dataset. The link
weights ‘pc weight’ and ‘aa weight’ are computed during graph sum-
marization. The classlabel ‘topic’ is a binary classlabel showing
whether the paper is a machine learning paper or not.

4.1.3 Reality Mining

The Reality Mining dataset captures communication, proximity, location, and

activity information from 97 subjects (students, researchers, faculty, etc.) at MIT
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over the course of the 2004-2005 academic year. Each participant of the study was

equipped with a bluetooth Nokia cellphone. The data records the duration of phone

calls between pairs of subjects as well as the extent of periods in which pairs of

individuals were in proximity of one another. A more detailed description of the

dataset is available at http://www.reality.mit.edu.

The database was pruned to conform to the relational schema in Figure 4.3 for

our experiments. The prediction task was to predict whether a person is a student or

not based on his/her call patterns and device proximity measurements. This dataset

is different from the other two datasets for two reasons. Firstly, the number of objects

in this dataset is quite small but the number of links between those objects is large.

Secondly, in the earlier datasets, a new temporal event like publishing of a paper or a

movie release is defined on a yearly basis, while in this dataset users are entering the

system more quickly. Therefore, we had to reduce the granularity of our temporal

dimension to a month instead of a year in this case.

Figure 4.3. The relational schema for the Reality Mining dataset. The
link weight ‘pp weight’ is computed during graph summarization and
captures the influence of both call relationships and device proximity
relationships between two people.

4.2 Models

We evaluated three different models in a classification context to assess the per-

formance of TVRC against baseline approaches:

• Snapshot Model: The Snapshot model is a baseline model that uses a graph

G≤t, which consists of all objects and links up to and including the year t of
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the sample, for learning. The Snapshot model does not weight the attributes

or the links.

• Window Model: The Window model is again a baseline model that uses

the graph Gt−1 for prediction on graph Gt. In other words, it only uses the

immediate past information for prediction and ignores all the other historical

data. With respect to the kernel smoothing phase in TVRC, the Window model

is identical to TVRC where the summary parameter θ=1.0.

• TVRC: As motivated earlier, we present the results of TVRC algorithm using

an exponential smoothing kernel for summarization and Weighted Relational

Classifier for prediction. The TVRC model first summarizes the graph into GS
t

using all years up to and including t, selecting the weighing parameter θ using

k-fold cross validation and then weights the attributes appropriately during

learning and prediction.

We describe the results of TVRC on three datasets (Cora, IMDb, Reality Mining)

evaluating three different kernels (exponential, linear, inverse linear) for summariza-

tion and two relational classification models (RBC and RPT).

4.3 Methodology

For each dataset, we divided the data into disjoint temporal samples or ‘snapshots’

{G1, G2, · · · , Gt} where each snapshot Gi corresponds to the events that happened

at time i. As discussed in Section 4.1.3, for the IMDb and Cora datasets, new events

like a new movie release and publishing of a paper respectively are considered yearly.

Therefore, for these two datasets our temporal dimension is defined in years. For

IMDb, t ∈ [2002,2007] while for Cora, t ∈ [1993,1998]. For Reality Mining however,

t ∈ {July, August, September, October, November} due to the events (new people

joining the system) having finer temporal granularity in this dataset. Note that the
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summarization phase uses data from a larger time window for each dataset as given

by Table 4.1. Table 4.3 summarizes the classification task on each of the datasets.

Table 4.3
Classification tasks.

Dataset Prediction task

IMDb Movie blockbuster status (gross> $90mil)

Cora Paper topic (is ML paper or not)

Reality Mining Student vs. Faculty/Other

The classification experiments are set up as follows: we learn the model on the

sample corresponding to time t and apply the model on the subsequent sample cor-

responding to time (t + 1). The samples will vary depending on the model being

evaluated. For example, while evaluating the TVRC model, we would learn the

model on GS
t and apply the model on GS

t+1. However, for evaluating the Snapshot

model, we would learn the model on G≤t and apply the model on Gt+1. We compare

the performance of different methods using area under the ROC curve (AUC).

4.4 Results and Analysis

Our first set of experiments assess the cross-validation aspect of TVRC. We com-

pare TVRC to a ceiling model which chooses the optimal value for the summary

parameter θ by evaluating the model for all values of θ on the test set and choosing

the best value. Figure 4.4 shows the average AUC perfromance for different values of

θ. The plot is an inverted curve with a unique maxima for all the three datasets—this

indicates that there exists an optimal amalgamation point for historical and current

information for the best prediction accuracies and using just the past information

or the present data may not yield the best results. ‘2’ shows the optimal choice of

θ for TVRC (θO) while ‘3’ shows the θ picked using k-fold cross validation (θCV ).

It is clear that choosing the summary parameter θ through cross-validation is not



28

significantly different from the optimal (ceiling) choice of θ (see paired t-test values

in Table 4.4). This is notable because we use i.i.d. cross-validation here instead of

relational cross-validation. Although it has been shown that ignoring dependencies

among instances in relational domains may result in statistical biases [5], we conjec-

ture that i.i.d. cross-validation works in this situation because all choices of parameter

values are biased uniformly and thus, it does not affect the optimal parameter choice

adversely.

Our second choice of experiments evaluate the performance of different relational

classifiers on different datasets. Figure 4.5 shows the performance of each of the four

models on the Cora classification task using the RBC and the RPT respectively as

the relational classification models. We also compared the three models with ablated

data to assess the temporal content in each type of link. Figures [4.5(c),4.5(d)] and

Figures [4.5(e),4.5(f)] compare the performance of the three models when only the

coauthor links and attributes or reference links and attributes are considered respec-

tively. We differentiate between these two types of links as follows. Reference links

occur only once in the snapshot Gt where t is the time when the paper was published.

Thus, reference links are examples of temporal events. However, links between co-
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authors are examples of temporally recurring events as they recur everytime a new

paper is published. Figure 4.5 clearly shows that TVRC results in a 10-15% improve-

ment over both the baseline models regardless of the relational classifier used for

prediction. In all three cases, the TVRC performs significantly better than baseline

models. Furthermore, we also confirm that performance is more accurate using both

the reference and coauthor attributes than either alone. In other words, both tempo-

ral events and temporally recurring events are useful in improving the performance

of the model.

Figure 4.6 compares the performance of each of the three models on the IMDb

classification task. The results show an improvement of 10-20% for TVRC over the

baseline models for both the relational classifiers. Similar improvements are observed

for ablated data experiments in Figures [4.6(c),4.6(d)] and Figures [4.6(e),4.6(f)] when

the attributes corresponding to only the temporal recurring events (co-star) and tem-

poral events (movies) are considered respectively.

Figure 4.7 compares the performance of each of the three models on the Reality

Mining classification task. Again the results show an improvement of 10-15% for

TVRC over the baseline models for both the classifiers. There were no temporal

events in the Reality Mining in the relational schema considered. There are however

several temporally recurring events as shown in Figure 4.3 namely the Person-Person

call links and Person-Person device proximity links.

Our third set of experiments compares the performance of the different kernel

functions used in the graph summarization phase for both relational models (RBC

and RPT). Figure 4.8 compares the performance of the three kernels—exponential,

linear and inverse linear—on each of the three input datasets. The results show that

while all kernels improve prediction accuracy over baseline models, the exponential

kernel is better than the other two kernels by at least 5% regardless of the model used

for prediction.

To test the significance of the improvements in the AUC values, we provide the

results of a two-tailed, paired t-test that compares the TVRC to each of the other three
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Figure 4.6. AUC performance on IMDb dataset—TVRC uses expo-
nential kernel for summarization.
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Figure 4.7. AUC performance on Reality Mining dataset—TVRC
uses exponential kernel for summarization.

models across the set of trials for each dataset. Table 4.4 lists the p-values for each

of these tests for TVRC using both the RBC and the RPT as the relational classifier.

The improvement of the TVRC compared to each baseline models is significant at a

p < 0.01 level, while the difference between the TVRC and the TVRC-Ceiling is not

significant.

Table 4.4
Significance of TVRC improvement (paired t-test p-values). Here S
refers to the Snapshot model, W refers to the Window model, C refers
to TVRC-Ceiling.

Dataset S W C S W C

(RBC) (RPT)

CORA 1.0E−5 5.0E−5 0.22 1.7E−5 3.0E−5 0.18

IMDb 7.9E−4 5.9E−4 0.18 1.5E−5 1.8E−5 0.26

Reality Mining 5.5E−4 4.4E−3 0.39 1.5E−4 1.5E−5 0.39

To test the significance of the improved performance using exponential kernel over

linear and inverse linear kernels, we provide the results of a two-tailed, paired t-test
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Figure 4.8. AUC performance of different kernels on the three datasets
using both RBC and RPT for relational classification.
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Table 4.5
Significance of exponential kernel performance compared to linear and
inverse linear kernels (paired t-test p-values) for TVRC using RBCs.

Dataset Linear Inverse Linear

CORA 1.9E−4 2.8E−4

IMDb 2.9E−6 1.7E−4

Reality Mining 1.9E−3 6.3E−3

Table 4.6
Significance of exponential kernel performance compared to linear and
inverse linear kernels (paired t-test p-values) for TVRC using RPTs.

Dataset Linear Inverse Linear

CORA 1.7E−3 1.7E−3

IMDb 6.3E−3 9.7E−3

Reality Mining 5.8E−4 3.3E−5

that compares the exponential kernel to the linear and inverse linear kernels across

the set of trials for each dataset. Tables 4.5 and 4.6 list the p-values for each of these

tests. The improvement of the exponential kernel compared to the other two kernels

is significant at a p < 0.01 level.

Figure 4.9 compares the performance of the TVRC that uses the RBC as its

component model (TVRCRBC) to the TVRC using the RPT as its component model

(TVRCRPT ) when exponential kernel is used in graph summarization phase. TVRCRPT

does almost as well as TVRCRBC on CORA and IMDb - however, TVRCRPT signifi-

cantly outperforms TVRCRBC on Reality Mining dataset due to a prevalence of useful

degree and count features, which cannot be easily represented in a RBC. Table 4.7 lists

the paired t-test results assessing the significance of performance difference TVRCRBC

and TVRCRPT . The improvement of using the RPT over the RBC is significant at a
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p < 0.01 level on the Reality Mining dataset while the difference on Cora and IMDb

is not significant.
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Figure 4.9. Comparing TVRCRBC vs TVRCRPT .

Table 4.7
Significance levels for TVRCRBC vs TVRCRPT (paired t-test p-values).

Dataset RBC vs RPT

CORA 0.13

IMDb 0.53

Reality Mining 2.0E−4

Thus, TVRC results in at least 10% improvement over both the baseline models—

Snapshot model and Window model—for all the three datasets regardless of the pre-

diction model used for relational classification. The improvements are also visible for

any choice of kernel function employed—though in our experiments, the exponential

kernel gives the best performance. The strength of TVRC lies in the modularity of

the framework whereby each phase is independent of the other enabling us to choose

the appropriate kernel function and relational classifier to best match the domain

under consideration.
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5 CONCLUSIONS

This thesis presents a new approach to modeling relational data with time-varying

link structure. To date, work on statistical relational models has focused primarily on

static snapshots of relational datasets even though most relational domains have tem-

poral dynamics that are important to model. Although there has been some work

modeling domains with time-varying attributes, to our knowledge this is the first

model that exploits information in dynamic relationships between entities to improve

prediction. This work has demonstrated that significant performance gains can be

achieved by incorporating temporal-relational information into statistical relational

models, even in a simple weighted summarization approach. We evaluated the algo-

rithm on three real world domains and showed that our TVRC approach improves

significantly upon the baseline approaches that ignore the temporal component of the

data regardless of the kernel function used for summarization and relational model

used for classification.

We evaluated the TVRC in three different domains, but the framework is appli-

cable to a wide array of relational domains where the relationships between entities

change over time. For example, our algorithm can be easily applied to predict the

content category of a news magazine based on the references it makes. Also, our

method of computing a weighted-summary graph can be combined with any statis-

tical relational learner. We have chosen to use RBC and RPT in this work due to

their simplicity. However, the TVRC framework is flexible and modular enough so

as to use many different kernel functions for summarization and statistical relational

models for classification (e.g., [7, 26,35]).

One of the strengths of our approach is that it is a relatively simple and efficient

way of incorporating time into statistical relational models. While our algorithm

doesn’t make a Markov assumption about the temporal dependencies, it is predicated
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on the assumption that events in the recent past are more informative than events in

the distant past. It also assumes that all relationships are meaningful (i.e., all edges

are included in the summary graph calculation). A full joint temporal-relational model

may be able to represent the dependencies in the data more accurately (e.g., [9]),

however without a means to limit either the temporal or relational dependencies,

the dimensionality of the model is far too large for accurate estimation with finite

datasets.

This work attempts to model temporal dependencies by specifying a limited num-

ber of temporal patterns to moderate the relational dependencies. Additional efforts

to identify and exploit temporal motifs for use as relational features (e.g., [29]) may

be a promising means to extend the relational model space in a restricted way while

still capturing most of the relevant temporal information in an efficient manner.

Possible future directions for this work include extending the temporal summa-

rization schemes to model temporally varying attributes along with the link structure.

In addition, we will consider formulating the TVRC framework as a latent variable

model where the summary “influence” weights between pairs of nodes are hidden vari-

ables that change over time and affect the statistical dependencies between attribute

values of incident nodes.
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A FULL EXPERIMENTAL RESULTS

Table A.1: AUC values for classification using Weighted RBC summarized using the ex-

ponential kernel. SM denotes the Snapshot model, W stands for the Window model, the

summary parameter θ ∈ [0.1,0.9]. θO is the optimal parameter computed by TVRC (Ceil-

ing) while θCV is the parameter selected by TVRC through cross validation. CORAtr

is the dataset where only temporally recurring events are considered (in this case coau-

thorship relationships), CORAte is the dataset where only temporal events are considered

(citation relationships) whereas CORAall considers all types of links. The same notation

is followed for IMDB as well.

Time SM 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 WM θO θCV

CORAall

1993-94 0.861 0.868 0.894 0.922 0.924 0.935 0.947 0.968 0.951 0.931 0.888 0.7 0.7

1994-95 0.881 0.874 0.893 0.916 0.930 0.944 0.961 0.973 0.944 0.923 0.894 0.7 0.6

1995-96 0.879 0.847 0.898 0.910 0.921 0.933 0.954 0.969 0.945 0.929 0.899 0.7 0.7

1996-97 0.888 0.889 0.897 0.913 0.906 0.947 0.959 0.971 0.941 0.913 0.887 0.7 0.7

1997-98 0.842 0.838 0.868 0.889 0.926 0.939 0.963 0.977 0.946 0.902 0.866 0.7 0.8

CORAtr

1993-94 0.651 0.665 0.687 0.721 0.725 0.738 0.746 0.768 0.750 0.731 0.678 0.7 0.7

1994-95 0.691 0.674 0.693 0.715 0.735 0.745 0.761 0.774 0.744 0.723 0.694 0.7 0.6

1995-96 0.689 0.647 0.698 0.711 0.721 0.733 0.754 0.769 0.745 0.729 0.699 0.7 0.7

1996-97 0.698 0.689 0.697 0.718 0.727 0.745 0.759 0.771 0.741 0.713 0.687 0.7 0.7

1997-98 0.652 0.638 0.668 0.689 0.726 0.741 0.763 0.777 0.746 0.702 0.666 0.7 0.8

CORAte

1993-94 0.851 0.868 0.884 0.903 0.917 0.929 0.937 0.948 0.931 0.909 0.868 0.7 0.7

1994-95 0.861 0.874 0.883 0.906 0.932 0.944 0.941 0.953 0.924 0.902 0.873 0.7 0.6

1995-96 0.859 0.847 0.876 0.891 0.903 0.916 0.937 0.949 0.928 0.911 0.882 0.7 0.7

1996-97 0.868 0.869 0.878 0.894 0.906 0.927 0.938 0.952 0.924 0.892 0.864 0.7 0.7

1997-98 0.822 0.838 0.856 0.871 0.897 0.916 0.923 0.934 0.921 0.902 0.843 0.7 0.8

IMDBall

2002-03 0.614 0.610 0.633 0.674 0.715 0.742 0.713 0.685 0.701 0.625 0.612 0.5 0.5

2003-04 0.702 0.676 0.718 0.747 0.765 0.792 0.775 0.739 0.742 0.722 0.701 0.5 0.5

2004-05 0.741 0.739 0.733 0.763 0.775 0.782 0.777 0.764 0.739 0.738 0.725 0.5 0.5

2005-06 0.716 0.718 0.731 0.753 0.771 0.799 0.782 0.768 0.754 0.741 0.739 0.5 0.6

2006-07 0.700 0.662 0.675 0.704 0.722 0.808 0.765 0.726 0.715 0.671 0.661 0.5 0.5

IMDBtr

2002-03 0.534 0.552 0.573 0.594 0.615 0.622 0.613 0.595 0.571 0.558 0.532 0.5 0.5

2003-04 0.632 0.646 0.658 0.674 0.685 0.692 0.675 0.649 0.632 0.625 0.621 0.5 0.5

2004-05 0.625 0.631 0.643 0.651 0.667 0.682 0.671 0.654 0.646 0.633 0.622 0.5 0.5

2005-06 0.626 0.642 0.653 0.668 0.675 0.692 0.687 0.683 0.668 0.643 0.629 0.5 0.6

2006-07 0.611 0.622 0.639 0.664 0.682 0.708 0.685 0.667 0.645 0.621 0.591 0.5 0.5

IMDBte

2002-03 0.564 0.582 0.603 0.614 0.635 0.652 0.643 0.625 0.591 0.579 0.562 0.5 0.5

2003-04 0.632 0.643 0.664 0.689 0.704 0.725 0.709 0.686 0.665 0.652 0.631 0.5 0.5

2004-05 0.661 0.679 0.685 0.693 0.704 0.712 0.707 0.693 0.679 0.668 0.665 0.5 0.5

2005-06 0.659 0.678 0.691 0.713 0.729 0.741 0.732 0.718 0.694 0.671 0.662 0.5 0.6

2006-07 0.642 0.662 0.675 0.704 0.722 0.753 0.735 0.706 0.682 0.651 0.634 0.5 0.5

REAL

Jul-Aug 0.718 0.695 0.713 0.737 0.788 0.811 0.832 0.825 0.798 0.773 0.736 0.6 0.6

Aug-Sep 0.763 0.738 0.766 0.783 0.794 0.802 0.821 0.817 0.794 0.771 0.741 0.6 0.6

Continued on next page . . .
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Table A.1 – continued from previous page

Time SM 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 WM θO θCV

Sep-Oct 0.734 0.701 0.722 0.761 0.781 0.810 0.826 0.847 0.793 0.769 0.744 0.7 0.6

Oct-Nov 0.751 0.729 0.774 0.781 0.792 0.797 0.841 0.838 0.796 0.774 0.737 0.6 0.6

Table A.2: AUC values for classification using Weighted RPT. The same notation is fol-

lowed as described in Table A.1

Time SM 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 WM θO θCV

CORAall

1993-94 0.879 0.892 0.913 0.925 0.932 0.944 0.953 0.962 0.935 0.914 0.885 0.7 0.6

1994-95 0.874 0.896 0.911 0.921 0.936 0.940 0.952 0.959 0.934 0.916 0.877 0.7 0.6

1995-96 0.881 0.897 0.909 0.919 0.928 0.941 0.959 0.962 0.939 0.912 0.883 0.7 0.7

1996-97 0.882 0.906 0.918 0.927 0.937 0.948 0.957 0.976 0.937 0.915 0.884 0.7 0.7

1997-98 0.878 0.886 0.905 0.916 0.936 0.947 0.958 0.971 0.949 0.916 0.879 0.7 0.8

CORAtr

1993-94 0.637 0.652 0.685 0.706 0.726 0.749 0.781 0.804 0.750 0.694 0.638 0.7 0.7

1994-95 0.644 0.658 0.686 0.697 0.726 0.751 0.779 0.786 0.751 0.684 0.643 0.7 0.6

1995-96 0.639 0.652 0.686 0.707 0.721 0.752 0.775 0.794 0.752 0.706 0.641 0.7 0.7

1996-97 0.639 0.658 0.682 0.706 0.719 0.751 0.776 0.783 0.748 0.705 0.648 0.7 0.7

1997-98 0.649 0.662 0.687 0.706 0.725 0.751 0.779 0.801 0.747 0.705 0.641 0.7 0.8

CORAte

1993-94 0.854 0.875 0.891 0.913 0.922 0.936 0.939 0.943 0.903 0.876 0.858 0.7 0.7

1994-95 0.846 0.873 0.896 0.916 0.926 0.931 0.936 0.939 0.902 0.873 0.854 0.7 0.6

1995-96 0.846 0.876 0.897 0.916 0.929 0.936 0.939 0.942 0.906 0.876 0.857 0.7 0.7

1996-97 0.852 0.877 0.896 0.917 0.927 0.937 0.940 0.947 0.907 0.878 0.864 0.7 0.7

1997-98 0.847 0.873 0.896 0.916 0.926 0.936 0.941 0.948 0.905 0.876 0.857 0.7 0.8

IMDBall

2002-03 0.684 0.719 0.737 0.754 0.769 0.791 0.767 0.732 0.725 0.717 0.698 0.5 0.5

2003-04 0.698 0.709 0.734 0.756 0.766 0.782 0.763 0.735 0.718 0.708 0.707 0.5 0.5

2004-05 0.696 0.708 0.731 0.755 0.779 0.793 0.789 0.728 0.728 0.714 0.703 0.5 0.5

2005-06 0.697 0.715 0.739 0.749 0.767 0.799 0.788 0.734 0.719 0.711 0.708 0.5 0.6

2006-07 0.698 0.714 0.731 0.748 0.769 0.796 0.761 0.733 0.728 0.715 0.706 0.5 0.5

IMDBtr

2002-03 0.577 0.596 0.614 0.644 0.675 0.699 0.665 0.635 0.614 0.592 0.574 0.5 0.5

2003-04 0.579 0.594 0.616 0.640 0.674 0.706 0.667 0.637 0.608 0.587 0.581 0.5 0.5

2004-05 0.580 0.601 0.611 0.643 0.673 0.694 0.680 0.637 0.617 0.595 0.576 0.5 0.5

2005-06 0.573 0.598 0.617 0.642 0.675 0.702 0.688 0.638 0.617 0.595 0.571 0.5 0.6

2006-07 0.580 0.601 0.621 0.642 0.671 0.706 0.663 0.640 0.614 0.597 0.580 0.5 0.5

IMDBte

2002-03 0.644 0.668 0.688 0.719 0.732 0.760 0.741 0.712 0.709 0.683 0.651 0.5 0.5

2003-04 0.646 0.678 0.692 0.718 0.738 0.762 0.737 0.722 0.707 0.682 0.646 0.5 0.5

2004-05 0.642 0.673 0.688 0.713 0.735 0.761 0.758 0.711 0.693 0.681 0.654 0.5 0.5

2005-06 0.646 0.668 0.685 0.709 0.734 0.762 0.753 0.714 0.704 0.675 0.655 0.5 0.6

2006-07 0.642 0.667 0.688 0.713 0.742 0.758 0.737 0.713 0.695 0.682 0.653 0.5 0.5

REAL

Jul-Aug 0.810 0.823 0.837 0.861 0.882 0.901 0.924 0.919 0.877 0.854 0.820 0.6 0.6

Aug-Sep 0.829 0.835 0.845 0.869 0.887 0.902 0.929 0.918 0.879 0.852 0.829 0.6 0.6

Sep-Oct 0.825 0.833 0.848 0.871 0.887 0.919 0.928 0.908 0.871 0.850 0.824 0.7 0.6

Oct-Nov 0.829 0.838 0.849 0.869 0.889 0.910 0.931 0.917 0.884 0.851 0.832 0.6 0.6



43

Table A.3: AUC values for classification using linear and inverse linear kernels

Weighted RBC Weighted RPT

Time Linear Inverse Linear Linear Inverse Linear

CORAall

1993-94 0.931 0.939 0.934 0.936

1994-95 0.934 0.939 0.939 0.939

1995-96 0.932 0.933 0.938 0.937

1996-97 0.941 0.947 0.934 0.934

1997-98 0.934 0.939 0.936 0.938

CORAtr

1993-94 0.741 0.738 0.769 0.771

1994-95 0.739 0.745 0.769 0.768

1995-96 0.742 0.748 0.762 0.769

1996-97 0.744 0.746 0.779 0.775

1997-98 0.745 0.756 0.762 0.762

CORAte

1993-94 0.914 0.913 0.913 0.916

1994-95 0.925 0.918 0.919 0.918

1995-96 0.926 0.917 0.917 0.918

1996-97 0.903 0.904 0.914 0.919

1997-98 0.923 0.919 0.918 0.922

IMDBall

2002-03 0.704 0.713 0.762 0.775

2003-04 0.762 0.774 0.768 0.771

2004-05 0.753 0.768 0.768 0.769

2005-06 0.763 0.764 0.752 0.763

2006-07 0.771 0.772 0.763 0.778

IMDBtr

2002-03 0.591 0.593 0.675 0.679

2003-04 0.662 0.664 0.664 0.674

2004-05 0.655 0.659 0.656 0.684

2005-06 0.655 0.656 0.669 0.673

2006-07 0.669 0.671 0.669 0.673

IMDBte

2002-03 0.626 0.629 0.728 0.736

2003-04 0.681 0.682 0.729 0.739

2004-05 0.675 0.678 0.723 0.733

2005-06 0.702 0.705 0.730 0.734

2006-07 0.711 0.721 0.729 0.733

REAL

Jul-Aug 0.774 0.781 0.887 0.889

Aug-Sep 0.784 0.794 0.881 0.891

Sep-Oct 0.783 0.771 0.883 0.891

Oct-Nov 0.794 0.801 0.891 0.896


