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WU The Basic Problem That We Studied

Related Work

@ Data: Citation data with papers,
authors, references.

@ Task: Predict paper topic given
coauthor and reference information.

@ Current Models: Relational ’
learning has achieved significant O H
performance gains by exploiting = o
homophily.
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Our Results/Contributions Experiments and Results

@ Model domains where link occurrence varies over time.

@ Our algorithm takes a two-step approach:

o Graph Summarization to capture link dynamics.
o Weighted Relational Bayes Classifier to incorporate link
strength into prediction.
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time step:
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Our Results/Contributions Experiments and Results

@ Represent time-varying data as a temporal sequence of
graphs (Gy, Go, ..., Gy).

@ Summarize graph Gf as a weighted sum of graphs at each
time step:

GS (1-0)G? , +0G; ift>1
L7606 if t = 1

@ 0 is a weighing parameter defining the strength of a link
(i.e. relationship) through time.
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Baseline RBC (Neville et al. "03)
For a class label C, attributes X, and related items R, the RBC
calculates the probability of C for an item i of type G(/) as

follows:

P(C'IX,R) = [ P(XnIC)
XmeXG(H)
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Our Results/Contributions Experiments and Results

Baseline RBC (Neville et al. "03)

For a class label C, attributes X, and related items R, the RBC
calculates the probability of C for an item i of type G(/) as
follows:

P(C'1X,R)  [] P(XnIC) -] HPx/yc P(C)

XmeXG() JeR X, eX&)

TV-RBC

We incorporate the weights from the summary graph (each
edge (/,j) has weight w;) as:

P(CIIX,R) o< [T PXnlC) -T] TI wi- P( xl|C) - P(C)

XmneXG() JER X, eXG()

v
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@ Dataset: 4,330 CORA machine learning papers published
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Our Results/Contributions Experiments and Results

@ Dataset: 4,330 CORA machine learning papers published
between 1981 and 1998.

@ Task: Predict paper topic given topics of references and
coauthor papers.
@ Models:
e TV-RBC: learn weighted RBC on G?, apply on G?

t+1°
@ Baseline RBC: learn on snapshot at t, apply on snapshot at

t+1.
@ Experiments:
o Fixed 6: Measure AUC for 6=0.7. @
o Varying 6: Measure AUC for varying 6. )
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Summary
Future Work

@ New approach to modeling relational data with
time-varying link structure.

@ Time-Varying RBC - uses summarized link graph and
weighted relational bayes classifier for prediction.

@ Our approach to summarization can be used with other
SRL models as well (provided attribute values can be
weighted).
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Future Work

@ Evaluate the algorithm on other real-world datasets.

@ Compare the performance of TV-RBC with other modified
SRL models (e.g. RPTs).

@ Develop a temporal cross-validation approach to set the
value of ¢ automatically during learning.

@ Extend the approach to model temporally-varying
attributes.

%

PURDUE

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007




@ Umang Sharan,
Department of Computer Science,
Purdue University
e-mail: usharan@cs.purdue.edu

@ Prof. Jennifer Neville,
Department of Computer Science,
Purdue University

e-mail: neville@cs.purdue.edu @

PURDUE

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007




	Introduction
	The Basic Problem That We Studied
	Related Work

	Our Results/Contributions
	Algorithm
	Experiments and Results

	Conclusions
	Summary
	Future Work

	

