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ABSTRACT
In a growing number of relational domains, the data record
temporal sequences of interactions among entities. For ex-
ample, in citation domains authors publish scientific papers
together each year and in telephone fraud detection domains
people make calls to each other each day. The temporal dy-
namics of these interactions contain information that can
improve predictive models (e.g., people publishing together
frequently are likely to be publishing on the same topic)
but to date there has been little effort to incorporate time-
varying dependencies into relational models. Past work in
relational learning has focused primarily on static “snap-
shots” of relational data. In this paper, we present an ini-
tial approach to modeling dynamic relational data graphs
in predictive models of attributes. More specifically, we use
a two-step process that first summarizes the dynamic graph
with a weighted static graph and then incorporates the link
weights in a relational Bayes classifier. We evaluate our ap-
proach on the Cora dataset (where co-author and citation
links vary over time) showing that our approach results in
significant performance gains over a baseline snapshot ap-
proach that ignores the temporal component of the data.

1. INTRODUCTION
Recent research has demonstrated the utility of modeling re-
lational information in domains such as fraud detection [14],
citation analysis [11], and marketing [5]. However, this
work has focused primarily on static snapshots1 of relational
datasets, even though most relational domains have tempo-
ral dynamics that are important to model. For example, in
fraud detection it is informative to know who is working with
whom, but it may also be helpful to model temporal patterns
of communications between suspects. Similarly, in market-
ing domains it is informative to know which customers are
affiliated, but it may also be helpful to model how those as-
sociations change over time. To date, there are few available

1A snapshot at time t consists of all the objects, links, and
attributes that have occurred up to and including time t.
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data mining tools that can simultaneously exploit both the
temporal and relational aspects of these domains.

Recent work in the area of statistical relational learning has
focused on transforming temporal data into aggregated fea-
tures [14] or on modeling the temporal dynamics of time-
varying attributes [18]. There have also been efforts to
model temporally-varying links to improve automatic dis-
covery of relational communities or groups [1, 8] but this
work has not attempted to use these communities in a clas-
sification context. In this work, we incorporate time-varying
links into statistical relational models in order to improve
attribute prediction in dynamic domains.

One motivation for modeling time-varying links is the recent
performance improvement that has been realized through
exploiting homophily2 in relational domains. The presence
of homophily offers a unique opportunity to improve model
performance because inferences about one object can be
used to improve inferences about related objects. For ex-
ample, if we know one person is involved in fraudulent ac-
tivity, then his associates have increased likelihood of being
engaged in misconduct as well [3]. Indeed, recent work in
relational modeling has shown that collective inference over
an entire dataset can result in more accurate predictions
than conditional inference for each instance independently
(e.g., [2]) and that the gains over conditional models increase
as homophily increases [9].

The accuracy of collective inference techniques, however, is
contingent on the presence of links in the data that con-
fer homophily. In real-world datasets that evolve over time,
it is quite likely that recent links confer more homophily
than links in the distant past. Also, a protracted series of
events between two entities can indicate a stronger under-
lying relationship and thus one that is more likely to con-
fer homophily. We conjecture that temporal sequences of
interactions among entities provide information about the
nature of relationships between entities and that these in-
teractions can be accurately and efficiently mined to identify
higher-level relationships that confer more homophily than
individual links.

As a first step towards mining these temporal patterns,
we outline and investigate a new approach to incorporat-
ing time-varying link information into statistical relational
models. We use a two-step process that first transforms a

2The tendency of like to associate with like [12].
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Figure 1: Example relational data fragment.

dynamic relational graph into a static weighted summary
graph, based on recent work modeling communities of in-
terest [3, 8]. Next the link weights are incorporated into a
relational classifier to moderate the influence of attributes
throughout the relational data graph.

We evaluate our algorithm on the Cora dataset—a database
of computer science research papers extracted automatically
from the web [10]. We model the temporally-varying cita-
tion and coauthor relationships with our approach and com-
pare to a baseline snapshot model that ignores the temporal
component of the data. We demonstrate that modeling the
temporal component of the relational structure significantly
improves classification performance.

2. RELATIONAL DATA
We will consider relational data represented as an attributed
multi-graph. More specifically, a directed, attributed graph
G = (V, E), with V nodes representing objects and E edges
representing relations3, with one or more connected compo-
nents. For example, consider the data graph in Figure 1.
The nodes V represent objects in the data (e.g., people,
organizations, events) and the edges E represent relations
among the objects (e.g., works-for, located-at).

Each node vi ∈ V and edge ej ∈ E are associated with a
type G(vi) = gvi , G(ej) = gej . This is depicted by node
color in Figure 1. For example, blue nodes represent people
and green nodes represent organizations. Each object or
link type g ∈ G has a number of associated attributes Xg =
(Xg

1 , ..., Xg
m) (e.g., age, gender).

When relational data has a temporal component, there are
three aspects of the data that may change over time. First,
there may be attributes whose values that vary over time
Xi = (Xi1, Xi2, ..., Xit). Second, there may be relationships
that vary over time. This results in a different data graph
Gt = (V, Et) for each time step t, where the nodes remain
constant but the edge set may vary (i.e., Eti = Etj for some

3Note that there may be more than one edge between a pair
of nodes.

i,j). Third, there may be objects that appear and disappear
over time. This is also represented as a set of data graphs
G

t = (Vt, Et), but in this case both the objects and links
sets may vary.

Initial efforts to incorporate time into statistical relational
models have focused on either the first or the third case. For
domains, where attributes vary over time, Sanghai et. al [18]
have extended probabilistic relational models (PRMs) [6]
in a manner similar to dynamic Bayes networks [7], rolling
out a separate PRM for each time step and modeling the
dependencies of attribute values in one time step to the next.
There is some recent work on modeling domains where the
number of objects is uncertain and can change over time [13].
However, to our knowledge, there are no statistical relational
models for domains where the links change over time.

In this paper we focus on the case where the links vary over
time and outline a model for this type of dynamic domain.
For example, consider the case where we have a set of peo-
ple coauthoring scientific papers. In each year there will be
different sets of people coauthoring different papers. This is
represented in Figure 2. The nodes (authors) remain con-
stant but the edges change in each time step, representing
the coauthor events that have occurred in each year.

Figure 2: Example data graph changing over time.

3. ALGORITHM
Our approach to classification in domains where the links
vary over time uses a two-step process that we describe in
detail below. First, we summarize the set of temporally
varying relational graphs into a static weighted summary
graph. Second, the link weights are incorporated into a re-
lational classifier to moderate the influence of attributes by
the strength of the associated relationship over time. In this
paper, we have chosen to use a relational Bayes classifier
(RBC) [16] for its simplicity and to avoid any confounding
effects due to feature selection. However, other relational
classifiers may also be used (e.g., [17, 6, 15]), provided that
they can handle weighted instances during learning and in-
ference.

3.1 Graph summarization
A simple and efficient way to model temporally-varying rela-
tional networks is to transform a temporal sequence of data
graphs Gt = (G1, G2, ..., Gt) into a static graph GS by sum-
marizing the sequence of links between any pair of nodes by
a single edge with a weight. We employ this approach with
an exponential weighting scheme based on the algorithm of
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Cortes et al. [3]. We define the summary graph at time t to
be the weighted sum of the graph at time t and the sum-
mary graph at time t− 1, with a parameter θ to specify the
influence of the current time step:

GS
t =

(
(1− θ)GS

t−1 + θGt if t > 1

θGt if t = 1

The above equation recursively defines the summary graph
GS

t at time t as the weighted average of the summary graph
GS

t−1 at time (t− 1) and the data graph Gt at time t. More
specifically, we use the weighted sum of the edge sets:

ES
t = {eij : eij ∈ ES

t−1 ∨ eij ∈ Et}

and wet
ij

= (1− θ)w
et−1

ij
· IES

t−1
+ θ · IEt

where IE = |eij | if eij ∈ E and 0 otherwise. Note that this
recursive definition of the summary graph incorporates all
links from time 1 to time t.

An example summary graph between for the data in Fig-
ure 2 is shown in Figure 3. Dotted edges denote diminish-
ing weights, solid edges imply reinforced weights, while red
edges denote fresh edges.

If we look at Figure 2, it is more likely that A and C are
close collaborators (in 1992) than A and E or A and D since
A published with C in both 1991 and 1992 but only pub-
lished with E and D in 1991. Similarly, it is more likely that
C and F have a stronger collaboration than C and E since
C and E only started publishing together in 1992 while C
and F have been publishing together since 1991. These are
the notions that we are trying to capture in the exponen-
tial weighting scheme. Such relationship patterns are quite
common in social network data— recent relationships tend
to be stronger than old and forgotten ones, while old and
perennial relationships tend to be the healthiest. We will
model the influences of citations and coauthors in a similar
manner for our predictive task. In other words, we postulate
that a paper’s topic is more likely to be influenced by a ref-
erence’s topic that has been published recently rather than
one that was published farther in the past. In addition, we
postulate that an author is more likely to be working on a
topic similar to those of his recent coauthors than those of
his past coauthors.

Note that our approach is general enough to handle cases
when more than one link exists between a pair of nodes at
a given time step. However, it does assume that if there are
multiple links that they are all of the same type and thus
can be summarized into a single relationship. For example,
if two authors A and B publish two papers and adminis-
ter a grant together in year t, IE = 3 and there will be
one summary edge between A and B even though the coau-
thor links and the co-PI links do not necessarily indicate
the same type of relationship between A and B. This case
can be easily dealt with by partitioning the graph into a
separate graph for each link type g before summarization.
However, for the experiments below, we focus our analysis
on a dataset where each pair nodes can only be linked by
edges of a single type (i.e., paper-to-paper citation links, and
person-to-person coauthor links).

0.91

0.91

0.91

0.21

0.21

0.21

0.70

0.70

Figure 3: Summary graph at time t = 1992, θ = 0.7
for the data in Figure 2.

3.2 Relational Bayes classifier
For learning and inference, we extend a relational Bayes
classifier (RBC) [16] to incorporate the link weights from
the summary graph into the probability calculations.

RBCs extend naive Bayes classifiers to a relational setting
by treating heterogeneous relational subgraphs as a homoge-
nous set of attribute multisets. For example, when consider-
ing the references of a single paper, the publication dates of
those references form multisets of varying size (e.g., {1995,
1995, 1996}, {1975, 1986, 1998, 1998}). The RBC assumes
each value of a multiset is independently drawn from the
same multinomial distribution. This approach is designed to
mirror the independence assumption of the naive Bayesian
classifier [4]. In addition to the conventional assumption
of attribute independence, the RBC also assumes attribute
value independence within each multiset.

For a class label C, attributes X, and related items R, the
RBC calculates the probability of C for an item i of type
G(i) as follows:

P (Ci|X, R) ∝
Y

Xm∈XG(i)

P (Xi
m|C) ·

Y
j∈R

Y
Xk∈XG(j)

P (Xj
k|C) · P (C)

(1)

In equation 1, each feature variable is implicitly weighed
with a weight 1. In order to incorporate the weights from
the summary graph we modify this equation as follows:

P (Ci
t |X, R) ∝

Y
Xm∈XG(i)

P (Xi
m|C) ·

Y
j∈R

Y
Xk∈XG(j)

wt
ij ·P (Xj

k|C) · P (C)

(2)

where wt
ij is the sum of the weights in the summary graph

ES
t on the path from the target node i to the related node

j. For example, if paper i references paper j, then wij is
the weight on the direct link between i and j. However, if
paper i is authored by person j who has coauthored with
person k (and k is not an author of i), then wik = wij +wjk.
The weights can be viewed as probabilities that a particular
relationship in the data is still active at the current time
step, given that the link was observed at time t− k. This is
modeled with a geometric distribution using the parameter
θ, which specifies the probability that a link occurred k time
steps in the past.
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In the experimental section below, we will refer to our ap-
proach as TV-RBC for time-varying RBC. The time com-
plexity of TV-RBC learning is O((t + m)E), where t is the
number of time steps, m is the number of attributes used for
prediction, and E is the number of edges in the summary
graph Gt. The time complexity for the summary graph com-
putation is O(tE) since each edge must be considered in each
summary calculation. In the worse case, when the graph is
close to completely connected, the number of edges will be
O(V 2). However, in many relational datasets, node degree
is bounded by a low constant (i.e., a node’s neighbors do not
grow as a function of dataset size), thus E << V 2 in prac-
tice. Also, if we assume that the number of neighbors for
each node (used to get a particular set of attribute values)
can be bounded by a low constant, then the time complex-
ity for the RBC learning algorithm is O(mV ) where V is
the number of target nodes (i.e., instances being predicted).
However, in the worst case, as the summary graph becomes
completely connected, the algorithm will be dominated by
the number of edges in the graph, thus the complexity of
RBC learning is O(mE).

4. EXPERIMENTAL EVALUATION
We report an initial evaluation of the TV-RBC on data
drawn from Cora, a database of computer science research
papers extracted automatically from the web using machine
learning techniques [10]. We selected the set of 4,330 ma-
chine learning papers along with associated authors, cited
papers, and related coauthors. We computed a summary
graph GS

t for each year t ≤ 1998, where the links in the
graphs comprise of the coauthor relations between people
and the citation relations between papers.

We evaluated the models in a classification context to as-
sess the impact of our weighting scheme on model perfor-
mance. We considered a set of temporal samples, one for
each year between 1993 and 1998, learning the models on
one year and then testing the models on the sample from
the subsequent year. The classification task was to predict
one of seven machine-learning paper topics (e.g., Genetic
Algorithms). The attributes supplied to the model were
Citation.topic and Coauthor.most-prevalent-topic. Figure 4
shows the query we used to identify the relational neighbor-
hood of a paper. The query matches all research papers in a
given sample and returns for each paper a subgraph that in-
cludes all authors and references, and coauthors associated
with the paper.

We compared two models. The first is a baseline (snap-
shot) RBC model that uses a graph G≤t, which consists of
all links up to and including the year t of the sample. The
RBC approach uses equation 1 and does not weight the at-
tributes or the links. The second model is the TV-RBC,
which first summarizes the graph into GS

t using all years up
to and including t and then weights the attributes appropri-
ately during learning and inference according to equation 2.
We evaluated the models using area under the ROC curve
(AUC).

The first set of results are plotted in Figures 5,6 and 7.
Here we compare the baseline RBC the TV-RBC with a
fixed θ = 0.7. Figure 5 plots the variation of AUC across
different years for TV-RBC as well as the baseline RBC

Figure 4: The attributes cweight and
aweight <year> are the weight attributes com-
puted from the summary graphs.

approach. Our approach results in an 8-12% improvement
over the baseline RBC model. We used a two-tailed, paired
t-test to assess the significance of the AUC results obtained
from the five temporal splits. The t-test compares TV-RBC
to baseline-RBC, with a null hypothesis of no difference in
AUC. The improvement is significant with p < 0.001.

Next we compared the two models with ablated data to
assess the temporal content in each type of link. Figure 6
plots the variation of AUC across different years using only
the coauthor attributes and links for classification. Again,
the improvement in AUC is significant at the p < 0.001 level.
However, without the topic attributes of the references, the
AUC values are lower than those in Figure 5.

Similarly, Figure 7 plots the variation of AUC but this time
the model uses only the attributes and links of the refer-
ences. Again, the improvement in AUC is significant at the
p < 0.001 level. In all three cases, the TV-RBC performs
substantially better than baseline RBC model. Further-
more, we also confirm that we get better prediction accu-
racies using both the citation and coauthor attributes than
either alone.

The value of the summary parameter θ that we have used
in the above experiments was fixed to be 0.7 which means
our summary function weighed past data points with 30%
weight and the present data points with 70% weight. We
varied θ across different values to see what is the effect of
the summary parameter on TV-RBC performance. These
results are graphed in Figures 8, 9 and 10 on the full and
ablated data. Ideally, we would expect it to be an inverted
parabolic curve peaking at some suitable value of θ between
0 and 1.

Figures 8, 9 and 10 plot the variation of AUC with θ across
each of the temporal samples. As expected, the curve re-
sembles an inverted parabola peaking in the neighborhood
of 0.7. In other words, learning and prediction over sum-
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Figure 5: AUC evaluation on Cora data.

TV−RBC
Baseline−RBC

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

93−94      94−95      95−96      96−97      97−98       Avg  

YEAR

Figure 6: AUC evaluation on Cora data using only
coauthor attributes/links.
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Figure 7: AUC evaluation on Cora data using only
reference attributes/links.

marized, weighted attributes works better than using just
the present information (θ = 1.0). It also works better than
using too much past information (θ = 0.25). Note that the
TV-RBC model outperforms the snapshot RBC model for
all reported values of θ as well. The maximum performance
of the baseline model is 0.887 on the 1996-97 sample. This
is less than the minimum TV-RBC performance of 0.913 on
the 1993-94 sample with θ = 0.25.

The difference in AUC values when considering only the
coauthor attributes and when considering only the reference
attributes is evident again from these figures. The model
performs best when both the attributes are considered but
reference attributes seem to have a higher influence on the
prediction task than the coauthor attributes which is ex-
pected considering the distance of coauthor attributes from
the paper objects in our relational schema.

5. CONCLUSIONS AND FUTURE WORK
This paper presents a new approach to modeling relational
data with time-varying link structure. To date, work on sta-
tistical relational models has been primarily on static snap-
shots of relational datasets even though most relational do-
mains have temporal dynamics that are important to model.
Although there has been some work modeling domains with
time-varying attributes, to our knowledge this is the first
model that exploits information in dynamic relationships be-
tween entities to improve prediction. This work has demon-
strated that significant performance gains can be achieved
by incorporating temporal-relational information into sta-
tistical relational models, even in a simple weighted sum-
marization approach.

We evaluated the algorithm in a citation domain, but the
algorithm is applicable to a wide array of relational domains
where the relationships between entities change over time.
For example, our algorithm can be easily applied to predict
the content category of a news magazine based on the refer-
ences it makes. We can also predict the success of a movie
given the history of the star cast of the movie and the rela-
tionships between them in the past (e.g. co-starred). Also,
our method of computing a weighted-summary graph can
be combined with any statistical relational learner. We have
chosen to use RBCs in this work due to their simplicity and
to avoid any confounding effects of feature selection. How-
ever, future work will explore the performance of alternative
predictive models (e.g., [17, 6, 19]).

There are a number of ways to improve on this work. First,
we intend to develop a temporal cross-validation approach
to set the value of θ automatically during learning. Next, we
plan to evaluate the algorithm on a number of other real-
world domains, using ablation studies to identify the link
types and parameter settings that offer the most improve-
ment in accuracy. Finally, we plan to extend the approach
to model temporally-varying attributes as well—in this case
the weighted summarization would produce distributions of
attribute values for each node.

One of the strengths of our approach is that it is a relatively
simple and efficient way of incorporating time into statisti-
cal relational models. While our algorithm doesn’t make a
Markov assumption about the temporal dependencies, it is
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Figure 8: TV-RBC performance as θ is varied.
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Figure 9: TV-RBC performance as θ is varied, using
only coauthor attributes/links.
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Figure 10: TV-RBC performance as θ is varied, us-
ing only reference attributes/links.

predicated on the assumption that events in the recent past
are more informative than events in the distant past. It also
assumes that all relationships are meaningful (i.e., all edges
are included in the summary graph calculation). A full joint
temporal-relational model may be able to represent the de-
pendencies in the data more accurately, however without a
means to limit either the temporal or relational dependen-
cies, the dimensionality of the cross-product model will be
far too large for accurate estimation with finite datasets.

This work attempts to model temporal dependencies by
specifying a limited number of temporal patterns to mod-
erate the relational dependencies. Other efforts to identify
and exploit temporal motifs for use as relational features
may be a promising means to extend the relational model
space in a restricted way while still capturing most of the
relevant temporal information in the data. Such efficient
methods for temporal-relational data mining will be invalu-
able to a number of relational domains including citation
analysis, fraud detection, and homeland security.
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