Temporal-Relational Classifiers for Prediction in Evolving Domains

> IEEE ICDM, Pisa, Italy December 18th, 2008 Authors: Umang Sharan, Jennifer Neville Network Learning and Discovery Lab Purdue University, West Lafayette

Motivation

Example Task:

- Relational learning has achieved significant performance gains by exploiting homophily/autocorrelation.
- Improved performance depends on level of autocorrelation in data
 - Stronger relationships are more likely to exhibit high levels of autocorrelation.
 - Spurious or fleeting relationships are more likely to exhibit low levels of autocorrelation.
- Current modeling techniques generally treat all links equally.

Temporal Relational Domains

- Temporal aspects contain information that is important to model.
 - Exploiting temporal locality and temporal recurrence.
- Many relational domains have temporal dynamics (e.g. Fraud Detection, Web Analysis, Bioinformatics, etc).

Temporal Aspects → Identify Stronger Relationships

Topic autocorrelation between papers published in 1996 with their references published in the past.

Movie	Release	Earnings
	Year	(\$ million)
$\operatorname{Zoolander}$	2001	54
The Royal Tanenbaums	2001	62
Starsky and Hutch	2004	99
Meet The Fockers	2004	315
Night At The Museum	2006	264

List of movies that Owen Wilson and Ben Stiller have costarred in the past 7 years.

Both examples support Temporal locality and Temporal recurrence.

Related Work

- Prediction models for relational domains – link structure and attributes varying with time.
- Spatio-Temporal RPTs (McGovern et al. '08): Adding Temporal features.
- Discrete Temporal Models (Hanneke et al. '06): Link prediction models based on first order Markov assumption.

PREDICTION TASK

Main Findings

- We describe a new framework for improving prediction models for temporally varying relational domains.
- TVRC or Time Varying Relational Classifier leads to improvements in prediction accuracy.
- TVRC better than baseline models on all real world datasets evaluated.

Time Varying Relational

Classifier

- Two step approach:
 - Graph Summarization through Kernel Smoothing.
 - Weighted Model Learning for classification.

TVRC – Graph Summarization

- Represent the relationships at each time step t with graph G_t .
 - Temporal Events A relationship occurring at a particular time step *t*. For e.g., Citing a particular paper.
 - Temporally Recurring A relationship occurring periodically. For e.g., Co-authors publishing jointly.
- Use kernel smoothing to summarize (G₁, G₂, G₃, ..., G_t) into G^s_t and estimate relationship strength.

Graph Summarization: Example

$$G_{1} = (V_{1}, E_{1}), \dots, G_{t} = (V_{t}, E_{t})$$

$$G_{t}^{S} = (V_{t}^{S}, E_{t}^{S}, W_{t}^{S})$$

$$V_{t}^{S} = V_{1} \cup \dots \cup V_{t}$$

$$E_{t}^{S} = E_{1} \cup \dots \cup E_{t}$$

$$W_{t}^{S} = \alpha_{1}W_{1} + \dots + \alpha_{t}W_{t} = \sum_{i=1}^{t} K(G_{i}; t, \theta)$$

Kernel Smoothing

TVRC – Weighted Modeling

- Modify relational classifiers to incorporate link weights.
 - We consider two models Relational Bayes Classifier (RBC) and Relational Probability Trees (RPT) (Neville et al. '03).

 $\begin{array}{l} \mathsf{RBC} \ \sqsubseteq \geqslant \{3:\mathsf{NN},1:\mathsf{RL},1:\mathsf{GA}\}\\ \mathsf{Weighted} \ \mathsf{RBC} \ \ \boxminus \geqslant \{(w_1+w_2+w_4):\mathsf{NN},w_3:\mathsf{RL},w_5:\mathsf{GA}\}\\ \end{array}$

Weighted RBC

More formally, for a class label C, attributes X and related items R, the Relational Bayes Classifier calculates the probability of C for an item i of type G(i) as:

$$P(C^i|\mathbf{X},R) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(\mathbf{i})}} P(X_m^i|C) \cdot \prod_{j \in R} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(\mathbf{j})}} P(X_k^j|C) \cdot P(C)$$

We incorporate the weights from the summary graph (each edge (i,j) has weight w_{ij}) as follows:

 $P(C_t^i | \mathbf{X}, R) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(\mathbf{i})}} P(X_m^i | C) \cdot \prod_{j \in R} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(\mathbf{j})}} \mathbf{w}_{ij}^t \cdot P(X_k^j | C) \cdot P(C)$

Weighted RPT

 Aggregating relational neighborhood – Min/Max, Avg, Mode, Count, etc.

Receipt s>2m	Mode Actor Gender	Avg Actor Age	Mode Actor Oscar	Mode Studio Loc	
+	F	28.50	Ν	USA	
+	М	33.34	Y	USA	
-	F	51.00	N	USA	
+	М	22.79	N	Canada	
•••					

For example,

- Mode(Actor Gender) = F for RPTs
- □ WMode(Actor Gender) = M for Weighted RPTs where $w_1=0.1, w_2=0.2, w_3=0.8,$ $w_4=0.3.$

Experimental Evaluation - Setup

Datasets Explored

IMDb	CORA	Reality Mining
Movies: $5,301$	Papers:16,153	People: 97
Actors: $126,641$	References: 29,603	Devices: 20,795
Producers: 11,973	Authors: $21,976$	Telephone Call
Studios: 391		Edges: $443,553$
Directors: 2,535		Device Proximity
Editors: 2,186		Edges: $285,512$
Cinematgrs: $1,518$		
Time Window:	Time Window:	Time Window:
1981 - 2007	1981 - 1998	May-Nov 2004

Kernels Explored

- Linear Kernel
- Inverse Linear Kernel
- Exponential Kernel

Models Explored

- Weighted RBC
- Weighted RPT

Models Compared

- Snapshot Model: Baseline model which uses all objects and links up to time *t* without weighing.
- Window Model: Baseline model which uses information from the previous time step.
- **TVRC:** Our model with graph summarization and weighted model learning. Parameter estimation through cross validation.
- **TVRC (Ceiling):** An 'optimal' TVRC model included as a ceiling comparison for TVRC.

Exponential Kernel + Weighted RBC

CORA

Reality Mining

MONTH

Sep-Oct

Snapshot

TVRC (Ceiling)

Oct-Nov

■ Window

TVRC

TVRC better than baselines: 10-12% on avg

Exponential Kernel + Weighted RPT

CORAIMDbReality MiningTVRC better than baselines: 10-15% on avg

Temporal Events Vs Temporally Recurring Relationships (CORA)

Exponential Kernel + Weighted RBC

Comparing Kernel Performance

CORA

IMDb

Reality Mining

Weighted RBC: Exponential Kernel 5-8% better than other kernels

Cross Validation

- TVRC does parameter estimation using *k-fold* cross validation.
- We do i.i.d cross validation that ignores the relational links.
- Biased estimates of error (Neville et al. '01) do not effect parameter choice.
 - Optimal θ remains the same.

Cross-Validation Analysis

Weighted RBC vs Weighted

RPT

- Weighted RBC and Weighted RPT performance comparison – exponential kernel summarization.
- Weighted RPT almost the same as weighted RBC on CORA and IMDb.
- Weighted RPT significantly better than Weighted RBC on Reality Mining – due to more prevalence of degree and count features.

Conclusions

- We presented a modular framework that exploits time-varying link structure.
- Evaluation on three real world datasets (CORA, IMDb and Reality Mining) using 3 kernels (Exponential, Linear and Inverse Linear) and 2 relational models (RBC, RPT).
- Incorporating Time improves prediction accuracy
 TVRC significantly better than baseline models on all datasets regardless of kernel/model choice.

Conclusions...

- Exponential Kernel the best choice amongst the kernels explored on all datasets.
- Automatic parameter estimation using cross validation not significantly different from TVRC (Ceiling) – based on paired t-test values.
- Weighted RPT as good as Weighted RBC on the datasets explored – better performance when the dataset has higher degree features (Reality Mining).

Future Directions

- Extend the approach to model temporally varying attributes.
 - Both relationships and attributes varying with time.
- Integrate information from multiple link types.
 - Different summary parameter for different types of links: Actor-Actor, Actor-Director, etc.
- Extending to a latent variable graphical model.
 - □ Summary weights are the latent variables learnt.

Questions?

- Contact Info:
 - Umang Sharan (usharan@cs.purdue.edu)
 - Jennifer Neville (neville@cs.purdue.edu)

