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Abstract
Many relational domains contain temporal information

and dynamics that are important to model (e.g., social net-
works, protein networks). However, past work in relational
learning has focused primarily on modeling static “snap-
shots” of the data and has largely ignored the temporal di-
mension of these data. In this work, we extend relational
techniques to temporally-evolving domains and outline a
representational framework that is capable of modeling
both temporal and relational dependencies in the data. We
develop efficient learning and inference techniques within
the framework by considering a restricted set of temporal-
relational dependencies and using parameter-tying meth-
ods to generalize across relationships and entities. More
specifically, we model dynamic relational data with a two-
phase process, first summarizing the temporal-relational in-
formation with kernel smoothing, and then moderating at-
tribute dependencies with the summarized relational infor-
mation. We develop a number of novel temporal-relational
models using the framework and then show that the current
approaches to modeling static relational data are special
cases within the framework. We compare the new models to
the competing static relational methods on three real-world
datasets and show that the temporal-relational models con-
sistently outperform the relational models that ignore tem-
poral information—achieving significant reductions in er-
ror ranging from 15% to 70%.

1 Introduction

Recent research has demonstrated the utility of model-
ing relational information for domains such as web analyt-
ics [5], marketing [8] and fraud detection [19]. This work
has demonstrated that incorporating the characteristics of
related instances into statistical models improves the accu-
racy of attribute predictions. However, this work has fo-
cused primarily on modeling static relational data. For the
numerous relational domains that have temporal dynamics,
researchers have generally analyzed static versions of the

data, which comprise all the objects, links, and attributes
that have occurred up to and including a specific time t.
These approaches have ignored the temporal information
present in the data even though, in many datasets, there
are likely to be dependencies in the temporal-relational in-
formation that can be exploited to improve model perfor-
mance. For example, in fraud detection a pair of individ-
uals that communicate regularly over time should have a
stronger relationship, and thus the attributes of the individ-
uals are more likely to exhibit correlation, than a pair of in-
dividuals that communicate for a brief time period. To date,
there are few available data mining tools that can exploit
these types of temporal-relational dependencies.

Relational data can exhibit temporal dynamics in a num-
ber of ways. First, the instances in the data may appear and
disappear over time. For example, web pages are created
as web sites are developed, expanded, and modified over
time. It may be important to model object creation times
if recently added instances exhibit different characteristics
than older instances (e.g., new vs. established accounts).
Second, the links (or relations) in the data may represent
events at a particular time. If this is the case, then the time
associated with the event may be important to model (e.g.,
the time of a phone call). Third, the attribute values in the
data may change over time. For example, a sensor may be
recording the position of an object moving through a build-
ing and this may inform predictions about the properties of
the object.

Recent work has only just begun to incorporate temporal
information into statistical relational models. Some initial
work has focused on transforming temporal-varying links
and objects into static aggregated features [19] and other
work has focused on modeling the temporal dynamics of
time-varying attributes in static link structures [13]. There
have been some recent efforts to model temporally-varying
links to improve automatic discovery of relational commu-
nities or groups [4, 15] but this work has not attempted to
exploit temporal link information in a classification context.

The goal of this work is to improve attribute prediction
in dynamic domains by incorporating the influence of time-



varying links into statistical relational models. One mo-
tivation for modeling time-varying links is the identifica-
tion of influential relationships in the data. Since much
of the success of relational models is predicated on the
correlation between attribute values of linked instances, a
method that prunes away spurious relationships and high-
lights stronger relationships will lead to higher levels of
correlation, and thus, more significant increases in model
performance compared to methods for independent and
identically-distributed (i.i.d.) data.

We conjecture that the temporal link information will be
useful for disambiguating relationships in this fashion. In
particular, we look for patterns of temporal locality and tem-
poral recurrence to identify stronger relationships that are
more likely to exhibit correlation among the associated at-
tribute values. Temporal locality refers to the notion that
events in the recent past are more influential than events
in the distant past. Temporal recurrence refers to the notion
that a regular series of events between two instances is more
likely to indicate a stronger underlying relationship than an
event isolated in time.

As illustration, consider the Cora database of computer
science research papers extracted automatically from the
web [18]. Each paper has an associated topic and citations
to other papers that have been published in the past. Fig-
ure 1 shows the autocorrelation between the topics of papers
published in the year 1996 with the topics of the papers they
cite in the past. The x-axis represents the time interval be-
tween 1996 and the year of publication of the cited papers.
Observe that the autocorrelation between topics decreases
as the time lag increases. Thus, the topics of recent ref-
erences are likely to be better indicators than the topics of
references that were published farther in the past.
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Figure 1. Temporal autocorrelation in Cora.

In this work, we propose the Time Varying Relational
Classifier (TVRC) framework—a novel approach to incor-

porating temporal dependencies into statistical relational
models. TVRC uses a two-step process that first transforms
a dynamic relational graph into a static weighted summary
graph using kernel smoothing. The second phase then in-
corporates the static link weights into a modified relational
classifier to moderate the influence of attributes throughout
the relational data graph. Our contributions are as follows:

• We propose a novel approach to temporal-relational
classification for domains where link events occur over
time. Our approach calculates a measure of relational
influence for each pair of objects, based on their inter-
actions over time, and then uses this measure to mod-
erate the influence of associated attributes.

• We show that our framework subsumes current static
relational modeling approaches. In particular, we show
that two common static modeling approaches for rela-
tional data are special cases within in our framework.

• We demonstrate that models derived from our frame-
work consistently perform well compared to current
state-of-the-art methods that ignore the temporal di-
mension of the data, achieving a 15-70% reduction in
error.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work. We present our proposed
methods and experimental analysis in Sections 3 and 4 re-
spectively. Finally, we offer conclusions in Section 5.

2 Background and Related Work

In this work, we consider relational data represented
as a directed, attributed multi-graph G = (V,E), with
V (nodes) representing objects and E (edges) represent-
ing relations, having one or more connected components.
The nodes V represent objects in the data (e.g., people,
organizations, events) and the edges E represent relations
among the objects (e.g., works-for, located-at). Each node
v ∈ V and edge e ∈ E are associated with a type G(v) =
gv, G(e) = ge. Each object or link type g ∈ G has a num-
ber of associated attributes Xg = (Xg

1 , ..., X
g
m) (e.g., age,

gender).
When relational data has a temporal component,

there are three aspects of the data that may vary over
time. First, attribute values may vary over time Xi =
(Xi1 , Xi2 , ..., Xit). Second, relationships may vary over
time. This results in a different data graph Gt = (V,Et) for
each time step t, where the nodes remain constant but the
edge set may vary (i.e., Eti 6= Etj for some ti, tj). Third,
objects existence may vary over time (i.e., objects may be
added or deleted). This can also represented as a set of data
graphs G′t = (Vt, Et), but in this case both the objects and
links sets may vary.



In this work, we focus on the second and third case, con-
sidering datasets where the objects and links vary over time.
We assume that attribute values are static and do not change
over time. Focusing on this type of data, we consider the
task of attribute prediction and develop methods to model
dependencies between the temporal evolution of the link
structure and the observed attribute values. Related work
can be categorized into the following areas: link analysis,
graph models, and Markov decision processes.

In the area of link analysis, there have been a num-
ber of researchers who have proposed and analyzed models
that exploit temporal changes in link structure (e.g., in the
World Wide Web or citation graphs). In particular, many
researchers have studied the characteristics of the Web by
representing its evolution as a series of graph snapshots (see
e.g., [2]). Similar data structures have been used to study the
evolution of communities and behavior in Blogspace [17].

Temporal changes in link structure have also been mod-
eled by Cortes et al. [6] and Hill et al. [15]. This work was
motivated by the problem of analyzing large-scale dynamic
networks such as telecommunications call networks. In or-
der to process massive volumes of data efficiently while ac-
counting for the dynamic nature of transactional data, they
proposed a method of summarization based on exponen-
tial decay of link weights. Their relational representation
captures relational changes in a concise way that evolves
smoothly through time and has been utilized for fraud de-
tection analysis.

Temporal locality has been studied for many years in ci-
tation analysis (see e.g., [9, 11])—it is well-known that a
scientific paper gets the majority of its citations soon after
it is published and as time passes, receives fewer citations.
Amitay et al. [1] have also identified aspects of temporal
locality in Web domains, showing that incorporating hy-
perlink timestamps into link-based page-ranking algorithms
can improve retrieval accuracy.

In the area of graph models, recent work has modeled
dynamic graphs with sequential linear models [14]. This
work represents temporal sequences of network structures
as first-order Markov chains where each network instance
is generated by an exponential random graph model [23].
The probability distribution for a graph at time t only
depends on the graph at time (t−1): P (Gt|Gt−1) =

1
Z(θ,Gt−1)exp{θ

′ψ(Gt, Gt−1)}. However, this model was
designed for link prediction tasks and is not geared for
attribute prediction. In addition, although Markov Chain
Monte Carlo estimation techniques have been developed to
learn the parameters of the model in small datasets, the ap-
proach is not tractable for large datasets.

In the area of Markov decision processes, some recent
work has focused on modeling attributes that change over
time. Guestrin et al. [13] combine probabilistic relational
models (PRM) [10] with dynamic Bayesian networks [12]

to model the state transitions in relational Markov deci-
sion processes (RMDP). In essence, RMDPs are a series of
PRMs, one for each time step, linked together through tem-
poral slot chains following a first-order Markov assumption,
where the state of an object at the next time step (t+1) can
depend on the state of the object (and related objects) at the
current time step t. Although these models can be used for
attribute prediction, they cannot model the effect of time-
varying link structures—they assume that the links among
instances are fixed throughout time.

In our framework, we build on past work that has iden-
tified the importance of temporal locality in dynamic graph
structures and extend the work of Cortes et al. [6] to develop
a summary representation that captures temporal changes
in relational structures. We then use this representation
to moderate the influence of attributes in relational graphs
through modified relational learning techniques. Our ap-
proach moves beyond past work in link analysis to use the
temporal information in a novel way to improve attribute
prediction. We also avoid the restrictive Markov assump-
tions of past work in graph models and MDPs by summariz-
ing the temporal information before incorporating it into the
models. This facilitates reasoning about patterns of tempo-
ral locality and temporal recurrence that we believe are cru-
cial for identifying and exploiting influential relationships
in the data.

3 TVRC Framework
Our approach, the Time Varying Relational Classifier

(TVRC), is a two-phase modeling framework, which con-
sists of a graph summarization phase and a relational classi-
fication phase. The key idea of TVRC is to exploit the tem-
poral influence of relationships across snapshots by summa-
rizing them suitably and utilizing the summarized values in
a modified relational classification model. Figure 2 illus-
trates the general framework of TVRC approach. We repre-
sent the data as a sequence of graph “snapshots.” Let G =
{G1, G2, · · · , Gn} be the sequence of temporal snapshots
of the data at consecutive time steps t, from t = 1, .., n.
Each temporal snapshot Gt contains the relationships be-
tween the objects in the dataset at time t. New objects and
links may have been added or deleted from Gt−1 to Gt.

3.1 Graph Summarization

The graph summarization phase summarizes a tempo-
ral sequence of relational graphs into a weighted summary
graph. Let Gt = (Vt, Et,Wt) be the relational graph at
time step t, where Wt = {wij = 1 : eij ∈ Et} is a set of
unit weights on the edges of Gt. We define the summary
graph GSt = (V St , E

S
t ,W

S
t ) at time t as a weighted sum of

the snapshot graphs up to time t as follows:

V St = V1 ∪ V2 ∪ · · · ∪ Vt



Figure 2. TVRC framework.

ESt = E1 ∪ E2 ∪ · · · ∪ Et

WS
t = α1W1 + α2W2 + · · ·+ αtWt =

t∑
i=1

K(Gi; t, θ)

where Vt and Et are the vertex and edge sets respectively
of the temporal snapshot Gt, and Wt are the unit weights
associated with the edges of Gt. The α weights determine
the contribution of each temporal snapshot in the summary
graph. We use a kernel function K with parameters θ to
determine the influence of each edge in the summary. Rep-
resenting the summary operation through kernel smooth-
ing gives us the freedom to explore and choose a suitable
weighing scheme from a wide range of kernel functions, so
as to best capture and exploit the temporal variations in the
subsequent classification phase. To model temporal locality
and temporal recurrence, we employ a weighting scheme
based on decaying kernels. In this work, we explore the fol-
lowing three kernels for summarization—exponential ker-
nels, linear kernels, and inverse linear kernels.

Our representation based on kernel summarization is
general enough to subsume the two current approaches to
modeling temporally-varying link structure in static rela-
tional models. The first approach ignores the temporal in-
formation on the links and include all links up to time t
uniformly. The second approach uses only the links in the
current time step t and ignore all links that occurred in the
past (i.e., t′ < t). We define the uniform and pulse kernels
below to capture these two approaches.

Exponential Kernel

The exponential kernel weighting scheme is similar to the
approach used by Cortes et al. [6] for graph summariza-
tion. The kernel function KE is defined as: KE(Gi; t, θ) =
(1 − θ)t−iθWi. The exponential kernel weighs the recent
past highly and decays the weight exponentially as time
passes. The parameter θ determines the rate of decay. Fig-
ure 3 shows an example of how quickly the unit weight for
an event in 1998 decays over time in the summary graph.

Figure 3. Example weight decay for 1998
link event. Solid curve=KL, uniform dash
curve=KIL, non-uniform dash curve=KE .

Inverse Linear Kernel

The inverse linear kernel KIL is defined as:
KIL(Gi; t, θ) = ( 1

ti−to+1 )θWi where to refers to the
first time step considered in the time window. The inverse
linear kernel decays more gently than the exponential (see
Figure 3) and retains the historical information longer.
Again, the parameter θ determines the rate of decay.

Linear Kernel

The linear kernel KL decays much less rapidly than either
the exponential or the inverse linear (see Figure 3) and is
defined as: KL(Gi; t, θ) = ( t∗−ti+1

t∗−to+1 )θWi where t∗ refers
to the final time step considered in the time window and to
is defined as above.

Uniform Kernel

The uniform kernel KU is defined as: KU (Gi; t, θ) = Wi.
The uniform kernel uses the original unit weights on the
edges in each snapshot graph and does not attempt to re-
weight them based on time.

Pulse Kernel

The pulse kernel KP is defined as: KP (Gi; t, θ) =
{Wi if t = t∗; 0 otherwise}. The pulse kernel only uses
the weights on edges in the final step of the time window
under consideration.



Note that the kernel summarization approach is general
enough to handle cases when more than one link exists be-
tween a pair of nodes at a given time step. However, it does
assume that if there are multiple links, they are all of the
same type and thus can be summarized into a single rela-
tionship. For example, if two authors A and B publish two
papers and administer a grant together in year t, there will
be one summary edge between A and B even though the
coauthor links and the co-PI links do not necessarily indi-
cate the same type of relationship between A and B. This
case can be easily dealt with by partitioning the graph into
a separate graph for each link type g before summarization.

3.2 Weighted Relational Classification

The second phase of the TVRC algorithm is relational
classification. Once we have summarized the temporal-
relational information into link weights on the summary
graph, we learn a predictive model on the summarized data
exploiting the temporal information to improve the predic-
tion results. Any relational model that can be extended to
use weighted instances is suitable for this phase. In this
work, we extend the relational Bayes classifier (RBC) and
the relational probability tree (RPT) because of their rela-
tive simplicity and efficiency.

Weighted Relational Bayes Classifier

RBCs [21] extend naive Bayes classifiers to relational set-
tings by treating heterogeneous relational subgraphs as ho-
mogenous sets of attribute multisets. For example, when
modeling the dependencies between the topic of a paper and
the topics of its references, the related topics form multisets
of varying size depending on the number of associated ref-
erences (e.g., {GA, NN}, {GA, NN, NN, NN, RL}). The
RBC models these heterogenous multisets by assuming that
each value of the multiset is independently drawn from the
same multinomial distribution. This approach is designed to
mirror the independence assumption of the naive Bayesian
classifier [7]. In addition to the conventional assumption
of attribute independence, the RBC also assumes attribute
value independence within each multiset.

More formally, for a class label C, attributes X, and re-
lated items R, the RBC calculates the probability of C for
an item i of type G(i) as follows:

P (Ci|X, R) ∝
Y

Xm∈XG(i)

P (Xi
m|C) ·

Y
j∈R

Y
Xk∈XG(j)

P (Xj
k|C) · P (C)

In the equation above, each attribute value is given an
implicit weight of 1. In order to incorporate the weights
from the summary graph we modify this equation to define
the weighted RBC as follows:

P (Ci
t |X, R) ∝

Y
Xm∈XG(i)

P (Xi
m|C) ·

Y
j∈R

Y
Xk∈XG(j)

wt
ij ·P (Xj

k|C) · P (C)

where wtij is the product of the weights in the summary
graph GSt on the path from node i to the related node j.

Weighted Relational Probability Trees

RPTs [20] extend standard probability estimation trees to
a relational setting in which data instances are heteroge-
neous and interdependent. The RPT algorithm searches
over a space of relational features that use aggregation
functions (e.g., AVERAGE, MODE, COUNT) to dynamically
propositionalize heterogeneous relational multisets and cre-
ate binary feature splits within the RPT. Similar to RBCs,
each attribute value is implicitly given a weight of 1 in
the RPT feature construction and evaluation phase. In or-
der to incorporate the weights from the summary graph,
the modified RPT uses the weighted multisets to calcu-
late its aggregate relational features. For example, a pa-
per that cites five papers with the following topics: {GA,
NN, NN, NN, RL} would have the following feature value
MODE(citedPaper.topic) = NN in the original RPT. In
the modified RPT, the multiset will be augmented with the
summary weights on the citations to those papers: {GA:0.1,
NN:0.2, NN:0.1, NN:0.4, RL:0.8} and the feature value will
become MODE(citedPaper.topic) = RL.

In the modified versions of both the RBC and the RPT,
the weights can be viewed as probabilities that a particular
relationship in the data is still active at the current time step
t, given that the link was observed at time (t− k).

3.3 TVRC Learning

There are three steps to learning a TVRC model: (1) cal-
culating the summary graph, (2) estimating the parameters
of the relational model, and (3) estimating the parameters
of the kernel function.

The graph summarization can be expressed as a recursive
computation on the sequence of graph snapshots {G1, · · · ,
Gt}. This means that the summary graph at time t can be
written as a weighted sum of the graph at time t and the
summary graph at time (t−1). For example, the exponential
kernel can be computed from the link weights {W1, W2,
· · · , Wt} as follows:

WS
t =

{
(1− θ)WS

t−1 + θWt if t > to

θWt if t = to

where to is defined as the initial time step in the time win-
dow. This enables efficient computation of the summary
weights by simply considering the temporal sequence of
link events between pairs of linked instances in the data.
Note that it does not require considering all pairs of nodes
in the data.

Once we have computed the weighted summary graph,
we can estimate the parameters of the the relational models



using relatively simple modifications to their learning tech-
niques. The weighted RBC uses standard maximum like-
lihood learning where the sufficient statistics for each con-
ditional probability distribution are computed as weighted
sums of counts, based on the edge weights from the summa-
rization phase. The weighted RPT uses the standard RPT
learning algorithm except that the aggregate functions are
computed after weighing each attribute value count with the
corresponding summary edge weight.

We use k-fold cross validation to estimate the kernel
parameter θ. We divide the training sample into k folds
by sampling the instances independently. We then learn a
TVRC model by training it on (k−1) folds and applying the
model on the remaining fold using a range of values of θ. In
the experiments below, we consider 10 values of θ in the set
{0.1, 0.2, ..., 1.0} and k=10. The θ value that achieves the
maximum cross-validated accuracy on each fold is selected
and the average of these values is used as the final θ value.
For the kernels considered in this work, there is a single θ
parameter that is tied across all the edges in the graphs. Fu-
ture work will consider the use of different θ parameters for
each link type in the data.

The time complexity of learning the TVRC models is
O((t+m)E), where t is the number of time steps, m is the
number of attributes used for prediction, and E is the num-
ber of edges in the summary graph GSt . The time complex-
ity for the summary graph computation isO(tE) since each
edge must be considered in each summary calculation. In
the worst case, when the graph is close to completely con-
nected, the number of edges will be O(V 2). However, in
many relational datasets, node degree is bounded by a con-
stant (i.e., a node’s neighbors do not grow as a function of
dataset size), thusE << V 2 in practice. The time complex-
ity for the RBC and RPT learning algorithms are O(mV )
where V is the number of target nodes (i.e., instances being
predicted) assuming that the number of neighbors for each
node (used to get a particular set of attribute values) can be
bounded by a constant.

3.4 TVRC Inference

There are two steps to applying a TVRC model for pre-
diction. First, we compute the summary graph GSt′ for the
time step t′ at which the model will be applied. Then we
apply the learned model to GSt′ . The prediction phase of
RBCs and RPTs is appropriately augmented to incorporate
the link weights WS

t in the multiset representations as de-
scribed above for learning.

4 Experiments

We report the results of TVRC prediction on three real
world datasets. We evaluate the performance of the five ker-
nels and two relational models. The uniform and pulse ker-

nels are included to represent current competing relational
models (i.e., RBC/RPT) that ignore the temporal dimension
of the data. The results show a significant improvement in
prediction accuracy over the competing models, regardless
of the choice of decay kernel or relational model.

4.1 Data
We considered three real world datasets for our exper-

iments. The Cora database contains authorship and cita-
tion information about computer science research papers
extracted automatically from the Web [18]. We considered
the set of 16,153 papers published in the time window 1981-
1998, along with their associated references and authors.

Figure 4 shows the relational query we used for clas-
sification, using modified QGraph [3] notation. The topic
and area attributes are supplied to the relational classifica-
tion model; the summary weights on reference and coauthor
links are computed using the year publication dates on pa-
pers. The prediction task is to identify whether a paper is a
machine learning paper. Note that we use the class label on
related objects for prediction but only the labels correspond-
ing to the previous time steps are available to the model (this
also applies to the other two datasets).

Paper

Reference

Author Past
Paper Coauthor

[0..]

[0..]
[1..]

year
topic

yeararea area

topic

cites

writtenBy

Figure 4. Cora query with attributes used for
summarization and classification.

The Reality Mining database contains telephone call and
mobile device proximity records among a set of 97 students,
faculty, and researchers at MIT over the course of the 2004-
2005 academic year (www.reality.mit.edu). Each partici-
pant of the study was equipped with a bluetooth cellphone.
The data records the duration of phone calls between pairs
of subjects as well as the period of time in which pairs of
individuals were in proximity of one another.

Figure 5 shows the relational query we used for classi-
fication. We considered the five month period from July to
November 2004, which contained 443,553 call edges, and
285,512 proximity edges. The prediction task was to predict
whether a person is a student or not based on his/her call
patterns and device proximity measurements. We defined
the granularity of our temporal dimension to a month in



these data (compared with a year for the other two datasets).
The summary weights are computed using the date stamp
on the links.

Person Callee

[0..]

isStudentisStudent

calledinProximityContact
Person

[0..]

isStudent
datedate

Figure 5. Reality Mining query with attributes
used for summarization and classification.

The Internet Movie Database (IMDb: www.imdb.com)
contains movie release information, including their earn-
ings, actors, studios, directors, etc. For this work, we se-
lected the set of 5,301 movies that were released in the US
in the time period 1981-2007. Each movie has an attribute
earnings, which records the amount the movie grossed in
total. We adjusted these values to account for inflation and
make the values comparable across different years. Fur-
thermore, we only considered movies with (adjusted) gross
earnings > $1mil.

Figure 6 shows the relational query we used for classi-
fication. The classification task was to predict whether a
movie would be a blockbuster (earnings > $90mil). The
summary weights on the links are computed using the re-
lease year of the movies.

4.2 Methodology

For each dataset, we divided the data into disjoint tempo-
ral samples or ‘snapshots’ {G1, G2, · · · , Gt} where each
snapshotGi corresponds to the events that happened at time
i. For IMDb and Cora, we chose snapshots sizes of one
year (i.e., Gi consists of all events within a single year):
IMDb—t ∈ [2002,2007], Cora—t ∈ [1993,1998]. For Re-
ality Mining, we chose a snapshot size of one month: t
∈ {July, August, September, October, November}. These
snapshots sizes were chosen empirically, based on the qual-
ity of timestamp information (e.g., in Cora many publica-
tion months are missing) and the number of events within
each snapshot (e.g., telephone calls are more frequent than
movie releases). Future work will consider more fully the
impact of snapshot size on model performance. Also note
that for each dataset, the summarization phase uses data
from a larger time window than the set of windows consid-
ered for evaluation (e.g., in IMDB the summarization also
considers the data from 1981-2001).

The temporal snapshots are summarized using the kernel
functions described in Section 3.1. The classification exper-
iments are set up as follows: we learn the model (RBC and
RPT) on the sample corresponding to time t (GSt ) and apply

the model on the subsequent sample corresponding to time
(t + 1) (GSt+1). We compare the performance of different
methods using area under the ROC curve (AUC).

4.3 Results and Analysis

Our first set of experiments evaluate the performance
of TVRC models on the Cora, IMDb and Reality Mining
datasets. Figures 7a-c shows the performance of TVRCs
using each of the five different kernels for summarization
and the RBC model for classification. Figures 7d-f shows
the results for the TVRC models that use RPTs as the clas-
sification model. Recall that we have included the uniform
and pulse kernels to compare to state-of-the-art relational
models which use a static representation of dynamic data.

The results show a consistent improvement of the TVRC
models with decay kernels compared to the baseline uni-
form and pulse kernels. Overall, the decay kernels achieve
a 15-70% reduction in error, regardless of the choice of re-
lational model. In addition, the exponential kernel outper-
forms the other decay kernels irrespective of the model used
for classification.

To test the significance of the improvements in AUC, we
used two-tailed, paired t-tests to compare pairs of models
across the set of trials for a given dataset, with a null hy-
pothesis that there is no difference in performance. All
TVRC models (with decay kernels) are significantly bet-
ter (p < 0.01) than the competing relational models (i.e.,
uniform and pulse kernels). This is consistent across all
three datasets and the two relational models. In addition,
the TVRC with exponential kernel is significantly better
(p < 0.01) than the TVRC with the linear or inverse-
linear kernels. There is no significant difference between
the TVRC models that use the RPT and RBC.

We performed another set of experiments to assess the
cross-validation aspect of TVRC. We compared the TVRC
to its “ceiling” model which used the optimal value for
the summary parameter θ (chosen as the θ that performed
best on the test set). Figure 7g shows the average AUC
perfromance for different values of θ using RBC for rela-
tional classification (similar results are observed while us-
ing RPT—the plot is omitted for brevity). The squares (2)
show the optimal choice of θ for the TVRC while the di-
amonds (�) show the θ picked using k-fold cross valida-
tion. The plot shows an inverted curve with a unique max-
ima for all the three datasets—however, the optimal point
is different for each dataset. It is clear that the parameter
setting chosen via cross-validation is not significantly dif-
ferent from the optimal (ceiling) choice of θ. This is no-
table because we used a more efficient (but potentially less
accurate) method of i.i.d. cross-validation rather than de-
signing a more computationally-intensive relational cross-
validation approach. Although it has been shown that ig-
noring dependencies among instances in relational domains
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Figure 6. IMDb query with attributes used for summarization and classification.

can result in statistical biases [16], we conjecture that i.i.d.
cross-validation is effective in this situation because we are
focused on selecting a single parameter—so all choices of
that parameter value are biased uniformly and thus, it does
not affect the optimal parameter choice adversely.

We also compared the models with ablated data to assess
the temporal content in each type of link. Figures 7h-i com-
pare the performance of the models on the Cora data using
the RBC as a component model. We graph the performance
of the models when only the reference links or the coauthor
links are considered in isolation. We differentiate between
these two types of links as follows. Reference links occur
only once in the snapshot Gt where t is the time when the
paper was published. Thus, reference links are examples
of temporal isolated events. However, links between co-
authors are examples of temporally recurring events as they
can recur everytime a new paper is published. Figure 7h-
i shows similar patterns as before–in both cases we see a
significant improvement by using the TVRC with an expo-
nential kernel. By examining Figures 7a, h, and i, it can
also be seen that TVRC performance is more accurate us-
ing both the reference and coauthor links than either alone.
This indicates that temporal isolated events and temporally
recurring events are both useful for improving the perfor-
mance of the model and also that both types of links exhibit
temporal dependencies. This effect also holds for the RPT
model and the IMDb datasets. (There are only temporally
recurring events in the Reality Mining dataset.)

5 Conclusions
This paper presents a new approach to modeling rela-

tional data with time-varying link structure. To date, work
on statistical relational models has focused primarily on
static snapshots of relational datasets even though most re-
lational domains have temporal dynamics that are important
to model. Although there has been some work modeling do-

mains with time-varying attributes, to our knowledge this is
the first model that exploits information in dynamic rela-
tionships between entities to improve prediction. This work
has demonstrated that significant performance gains can be
achieved by incorporating temporal-relational information
into statistical relational models.

We evaluated our algorithm on three real world domains
and showed that the TVRC approach achieves significant
performance gains compared to competing relational ap-
proaches that ignore the temporal component of the data.
The improvement is achieved regardless of the decay ker-
nel function used for summarization or the relational model
used for classification. Overall, the TVRC results in a 15-
70% reduction in error.

One strength of TVRC approach lies in the modularity
of the framework whereby each phase is independent of the
other, enabling us to choose the appropriate kernel func-
tion and relational classifier to best match the domain under
consideration. Notably, the static representations generally
used to apply relational models to dynamic datasets are spe-
cial cases within our framework. In this work we have cho-
sen to explore three decay kernels in order to best capture
the notions of temporal locality and recurrence. However,
our future work will examine the temporal-relational auto-
correlation patterns in additional real-world datasets to ex-
plore whether alternative kernel functions (e.g., step func-
tions) could produce additonal performance gains. We have
chosen to use RBCs and RPTs as the relational models
in this work due to their simplicity. However, the TVRC
framework is flexible enough that it can be used with other
statistical relational models (e.g., [10, 22, 24]) as long as the
models can be modified to deal with weighted instances.

Another strength of our approach is that it is a relatively
simple and efficient way of incorporating time into statisti-
cal relational models. While our algorithm doesn’t make a
Markov assumption about the temporal dependencies, it is
predicated on the assumption that events in the recent past
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are more informative than events in the distant past. A full
joint temporal-relational model may be able to represent the
dependencies in the data more accurately. However without
a means to limit either the temporal or relational dependen-
cies, the dimensionality of such a joint model will be far too
large for accurate estimation with reasonably-sized datasets.

This work attempts to model temporal dependencies by
specifying a limited space of temporal patterns to moderate
the relational dependencies. Additional efforts to identify
and exploit temporal motifs for use as relational features
may be a promising means to extend the relational model
space in a restricted way while still capturing most of the
relevant temporal information in an efficient manner.

Our future work will include an extension to the the tem-
poral summarization scheme to model temporally varying
attributes and an investigation of alternative kernels and re-
lational models. In addition, we will cast the model in a
more principled graphical model framework, formulating it
as a latent variable model where the summary “influence”
weights between pairs of nodes are hidden variables that
change over time and affect the statistical dependencies be-
tween attribute values of incident nodes.
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[19] J. Neville, O. Şimşek, D. Jensen, J. Komoroske, K. Palmer,
and H. Goldberg. Using relational knowledge discovery
to prevent securities fraud. In Proc. of the 11th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2005.

[20] J. Neville, D. Jensen, L. Friedland, and M. Hay. Learn-
ing relational probability trees. In Proc. of the 9th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2003.

[21] J. Neville, D. Jensen, and B. Gallagher. Simple estimators
for relational Bayesian classifers. In Proc. of the 3rd IEEE
International Conference on Data Mining, 2003.

[22] C. Perlich and F. Provost. Aggregation-based feature inven-
tion and relational concept classes. In Proc. of the 9th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2003.

[23] T. Snijders. Markov chain monte carlo estimation of expo-
nential random graph models. Journal of Social Structure,
3(2), 2002.

[24] B. Taskar, P. Abbeel, and D. Koller. Discriminative proba-
bilistic models for relational data. In Proc. of the 18th Con-
ference on Uncertainty in Artificial Intelligence, 2002.


