Exploiting Time-Varying Relationships in Statistical Relational Models

Umang Sharan Jennifer Neville

Department of Computer Science Purdue University, West Lafayette

Joint 9th WebKDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis, 2007

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Sar

Outline

Introduction

- The Basic Problem That We Studied
- Related Work
- 2 Our Results/Contributions
 - Algorithm
 - Experiments and Results
- 3 Conclusions
 - Summary
 - Future Work

The Basic Problem That We Studied Related Work

Outline

Introduction

- The Basic Problem That We Studied
- Related Work
- Our Results/Contributions
 - Algorithm
 - Experiments and Results
- 3 Conclusions
 - Summary
 - Future Work

Example Task

- Data: Citation data with papers, authors, references.
- **Task**: Predict paper topic given coauthor and reference information.
- **Current Models**: Relational learning has achieved significant performance gains by exploiting homophily.

The Basic Problem That We Studied

Example Task

- Data: Citation data with papers, authors, references.
- **Task**: Predict paper topic given coauthor and reference information.
- **Current Models**: Relational learning has achieved significant performance gains by exploiting homophily.

The Basic Problem That We Studied

Example Task

- Data: Citation data with papers, authors, references.
- **Task**: Predict paper topic given coauthor and reference information.
- Current Models: Relational learning has achieved significant performance gains by exploiting homophily.

The Basic Problem That We Studied

Introduction Contributions Conclusions

Our Results/Contributions

The Basic Problem That We Studied Related Work

Why model time?

- Many relational domains have temporal dynamics (e.g fraud detection, web analysis, bioinformatics, etc).
- Temporal aspects contain information that is important to model (e.g. locality, recurrence).

Introduction Contributions Conclusions

Our Results/Contributions

The Basic Problem That We Studied Related Work

Why model time?

- Many relational domains have temporal dynamics (e.g fraud detection, web analysis, bioinformatics, etc).
- Temporal aspects contain information that is important to model (e.g. locality, recurrence).

500

→ Ξ → < Ξ →</p>

Introduction The Basic Problem That We Studied Our Results/Contributions **Related Work Temporal Relational Models PREDICTION TASK** g existen attribute values attributes links **TEMPORALLY EVOLVING DATA** PURDUE < E ▶ < ∃ > 200 < <p>O > < <p>O >

The Basic Problem That We Studied Related Work

Temporal Relational Models

The Basic Problem That We Studied Related Work

Temporal Relational Models

The Basic Problem That We Studied Related Work

Temporal Relational Models

Ngorithm Experiments and Results

Outline

Introduction

- The Basic Problem That We StudiedRelated Work
- 2 Our Results/Contributions
 - Algorithm
 - Experiments and Results
- 3 Conclusions
 - Summary
 - Future Work

Algorithm Experiments and Results

Time Varying RBC

• Model domains where link occurrence varies over time.

Our algorithm takes a two-step approach:

- Graph Summarization to capture link dynamics.
- Weighted Relational Bayes Classifier to incorporate link strength into prediction.

Algorithm Experiments and Results

Time Varying RBC

- Model domains where link occurrence varies over time.
- Our algorithm takes a two-step approach:
 - Graph Summarization to capture link dynamics.
 - Weighted Relational Bayes Classifier to incorporate link strength into prediction.

Algorithm Experiments and Results

Time Varying RBC

- Model domains where link occurrence varies over time.
- Our algorithm takes a two-step approach:
 - Graph Summarization to capture link dynamics.
 - Weighted Relational Bayes Classifier to incorporate link strength into prediction.

Algorithm Experiments and Results

Time Varying RBC

- Model domains where link occurrence varies over time.
- Our algorithm takes a two-step approach:
 - Graph Summarization to capture link dynamics.
 - Weighted Relational Bayes Classifier to incorporate link strength into prediction.

Algorithm Experiments and Results

Graph Summarization

- Represent time-varying data as a temporal sequence of graphs (G₁, G₂, ..., G_t).
- Summarize graph G^S_t as a weighted sum of graphs at each time step:

$$G_t^S = \begin{cases} (1-\theta)G_{t-1}^S + \theta G_t & \text{if } t > 1\\ \theta G_t & \text{if } t = 1 \end{cases}$$

 θ is a weighing parameter defining the strength of a link (i.e. relationship) through time.

イロト イポト イヨト イヨト

Algorithm Experiments and Results

Graph Summarization

- Represent time-varying data as a temporal sequence of graphs (G₁, G₂, ..., G_t).
- Summarize graph G^S_t as a weighted sum of graphs at each time step:

$$G_t^S = \begin{cases} (1-\theta)G_{t-1}^S + \theta G_t & \text{if } t > 1\\ \theta G_t & \text{if } t = 1 \end{cases}$$

 θ is a weighing parameter defining the strength of a link (i.e. relationship) through time.

イロト イポト イヨト イヨト

Algorithm Experiments and Results

Graph Summarization

- Represent time-varying data as a temporal sequence of graphs (G₁, G₂, ..., G_t).
- Summarize graph G^S_t as a weighted sum of graphs at each time step:

$$G_t^{S} = \begin{cases} (1-\theta)G_{t-1}^{S} + \theta G_t & \text{if } t > 1\\ \theta G_t & \text{if } t = 1 \end{cases}$$

 θ is a weighing parameter defining the strength of a link (i.e. relationship) through time.

イロト イポト イヨト イヨト

Algorithm Experiments and Results

Graph Summarization - an example

Algorithm Experiments and Results

Graph Summarization - an example

 G_{1992}

 G_{1991}

Algorithm Experiments and Results

Graph Summarization - an example

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007

イロト イポト イヨト イヨト

DQC

Algorithm Experiments and Results

Relational Bayes Classifier

Baseline RBC (Neville et al. '03)

For a class label *C*, attributes **X**, and related items *R*, the RBC calculates the probability of *C* for an item *i* of type G(i) as follows:

$$P(C^i|\mathbf{X},R) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(i)}} P(X_m^i|C) \ \cdot \prod_{j \in R} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(j)}} P(X_k^j|C) \ \cdot \ P(C)$$

TV-RBC

We incorporate the weights from the summary graph (each edge (i,j) has weight w_{ij}) as:

$$P(C_t^i | \mathbf{X}, R) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(i)}} P(X_m^i | C) \cdot \prod_{j \in R} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(j)}} \mathbf{w}_{ij}^t \cdot P(X_k^j | C) \cdot P(C)$$

Algorithm Experiments and Results

Relational Bayes Classifier

Baseline RBC (Neville et al. '03)

For a class label *C*, attributes **X**, and related items *R*, the RBC calculates the probability of *C* for an item *i* of type G(i) as follows:

$$\mathcal{P}(\mathcal{C}^i|\mathbf{X},\mathcal{R}) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(i)}} \mathcal{P}(X_m^i|\mathcal{C}) \ \cdot \prod_{j \in \mathcal{R}} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(j)}} \mathcal{P}(X_k^j|\mathcal{C}) \ \cdot \ \mathcal{P}(\mathcal{C})$$

TV-RBC

We incorporate the weights from the summary graph (each edge (i,j) has weight w_{ij}) as:

$$P(C_t^i | \mathbf{X}, R) \propto \prod_{X_m \in \mathbf{X}^{\mathbf{G}(i)}} P(X_m^i | C) \cdot \prod_{j \in R} \prod_{X_k \in \mathbf{X}^{\mathbf{G}(j)}} \mathbf{w}_{ij}^t \cdot P(X_k^j | C) \cdot P(C)$$

200

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - *Varying* θ : Measure AUC for varying θ .

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - *Varying* θ : Measure AUC for varying θ .

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - *Varying* θ : Measure AUC for varying θ .

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - Varying θ : Measure AUC for varying θ .

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - Varying θ : Measure AUC for varying θ .

Algorithm Experiments and Results

Experimental Setup

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.

• Experiments:

- *Fixed* θ : Measure AUC for θ =0.7.
- Varying θ : Measure AUC for varying θ .

Algorithm Experiments and Results

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - Varying θ : Measure AUC for varying θ .

Algorithm Experiments and Results

Experimental Setup

- **Dataset**: 4,330 CORA machine learning papers published between 1981 and 1998.
- **Task**: Predict paper topic given topics of references and coauthor papers.
- Models:
 - *TV-RBC*: learn weighted RBC on G_t^S , apply on G_{t+1}^S .
 - Baseline RBC: learn on snapshot at t, apply on snapshot at t + 1.
- Experiments:
 - *Fixed* θ : Measure AUC for θ =0.7.
 - Varying θ : Measure AUC for varying θ .

イロト イ理ト イヨト イヨト

Algorithm Experiments and Results

Results: Fixed θ

Variation of AUC across different years for $\theta = 0.7$

Algorithm Experiments and Results

Results: Fixed θ

Refs + Coauthors

Variation of AUC across different years for $\theta = 0.7$

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007

< D > < P >

Introduction Our Results/Contributions

Experiments and Results

Results: Fixed θ

Refs + Coauthors

Coauthors only.

Variation of AUC across different years for $\theta = 0.7$

500

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007

< <p>O > < <p>O >

Algorithm Experiments and Results

Results: Fixed θ

Algorithm Experiments and Results

Results: Varying θ

Variation of AUC with θ .

Algorithm Experiments and Results

Results: Varying θ

Variation of AUC with θ .

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007

< D > < P

ъ

Algorithm Experiments and Results

Results: Varying θ

Refs + Coauthors

Coauthors only.

Variation of AUC with θ .

Umang Sharan, Jennifer Neville Temporal Variations in SRL - WebKDD/SNA-KDD 2007

 $\langle \Box \rangle \langle \Box \rangle$

Algorithm Experiments and Results

Results: Varying θ

Summary Future Work

Outline

Introduction

- The Basic Problem That We StudiedRelated Work
- 2 Our Results/Contributions
 - Algorithm
 - Experiments and Results
- 3 Conclusions
 - Summary
 - Future Work

- New approach to modeling relational data with time-varying link structure.
- Time-Varying RBC uses summarized link graph and weighted relational bayes classifier for prediction.

Summary

• Our approach to summarization can be used with other SRL models as well (provided attribute values can be weighted).

- New approach to modeling relational data with time-varying link structure.
- Time-Varying RBC uses summarized link graph and weighted relational bayes classifier for prediction.

Summary

• Our approach to summarization can be used with other SRL models as well (provided attribute values can be weighted).

Conclusions

- New approach to modeling relational data with time-varying link structure.
- Time-Varying RBC uses summarized link graph and weighted relational bayes classifier for prediction.

Summary

• Our approach to summarization can be used with other SRL models as well (provided attribute values can be weighted).

Summary Future Work

Future Work

• Evaluate the algorithm on other real-world datasets.

- Compare the performance of TV-RBC with other modified SRL models (e.g. RPTs).
- Develop a temporal cross-validation approach to set the value of θ automatically during learning.
- Extend the approach to model temporally-varying attributes.

Summary Future Work

Future Work

- Evaluate the algorithm on other real-world datasets.
- Compare the performance of TV-RBC with other modified SRL models (e.g. RPTs).
- Develop a temporal cross-validation approach to set the value of θ automatically during learning.
- Extend the approach to model temporally-varying attributes.

Summary Future Work

Future Work

- Evaluate the algorithm on other real-world datasets.
- Compare the performance of TV-RBC with other modified SRL models (e.g. RPTs).
- Develop a temporal cross-validation approach to set the value of θ automatically during learning.
- Extend the approach to model temporally-varying attributes.

Summary Future Work

Future Work

- Evaluate the algorithm on other real-world datasets.
- Compare the performance of TV-RBC with other modified SRL models (e.g. RPTs).
- Develop a temporal cross-validation approach to set the value of θ automatically during learning.
- Extend the approach to model temporally-varying attributes.

 Umang Sharan, Department of Computer Science, Purdue University e-mail: usharan@cs.purdue.edu

 Prof. Jennifer Neville, Department of Computer Science, Purdue University e-mail: neville@cs.purdue.edu

∃ ► 4.