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Data: Citation data with papers,
authors, references.
Task: Predict paper topic given
coauthor and reference information.
Current Models: Relational
learning has achieved significant
performance gains by exploiting
homophily.
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Why model time?

Time

Many relational domains have temporal dynamics (e.g
fraud detection, web analysis, bioinformatics, etc).
Temporal aspects contain information that is important
to model (e.g. locality, recurrence).
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Time Varying RBC

Model domains where link occurrence varies over time.
Our algorithm takes a two-step approach:

Graph Summarization to capture link dynamics.
Weighted Relational Bayes Classifier to incorporate link
strength into prediction.
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Graph Summarization

Represent time-varying data as a temporal sequence of
graphs (G1, G2, . . . , Gt ).
Summarize graph GS

t as a weighted sum of graphs at each
time step:

GS
t =

{
(1 − θ)GS

t−1 + θGt if t > 1
θGt if t = 1

θ is a weighing parameter defining the strength of a link
(i.e. relationship) through time.
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Relational Bayes Classifier

Baseline RBC (Neville et al. ’03)
For a class label C, attributes X, and related items R, the RBC
calculates the probability of C for an item i of type G(i) as
follows:

P(C i |X, R) ∝
∏

Xm∈XG(i)

P(X i
m|C) ·

∏
j∈R

∏
Xk∈XG(j)

P(X j
k |C) · P(C)

TV-RBC
We incorporate the weights from the summary graph (each
edge (i ,j) has weight wij ) as:

P(C i
t |X, R) ∝

∏
Xm∈XG(i)

P(X i
m|C) ·

∏
j∈R

∏
Xk∈XG(j)

w t
ij · P(X j

k |C) · P(C)
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Experimental Setup

Dataset: 4,330 CORA machine learning papers published
between 1981 and 1998.
Task: Predict paper topic given topics of references and
coauthor papers.
Models:

TV-RBC: learn weighted RBC on GS
t , apply on GS

t+1.
Baseline RBC: learn on snapshot at t , apply on snapshot at
t + 1.

Experiments:
Fixed θ: Measure AUC for θ=0.7.
Varying θ: Measure AUC for varying θ.
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Results: Varying θ
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Conclusions

New approach to modeling relational data with
time-varying link structure.
Time-Varying RBC - uses summarized link graph and
weighted relational bayes classifier for prediction.
Our approach to summarization can be used with other
SRL models as well (provided attribute values can be
weighted).
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Future Work

Evaluate the algorithm on other real-world datasets.
Compare the performance of TV-RBC with other modified
SRL models (e.g. RPTs).
Develop a temporal cross-validation approach to set the
value of θ automatically during learning.
Extend the approach to model temporally-varying
attributes.
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