
Parallel Algorithms

for the

Positive Linear Programming Problem

by

Virat Agarwal Umang Sharan

B.Tech. Project Thesis

Under the Guidance of

Dr. Naveen Garg

With the

Department of Computer Science & Engg.

Indian Institute of Technology, Delhi

Acknowledgment

We would like to thank Dr. Naveen Garg for the time and effort that he has put in to help

us with our project. Apart from providing us with the necessary motivation, he gave us

his complete support and backed us in all our efforts. We are greatly indebted to him for

whatever we have achieved in our project. Without his help and guidance this work would

have not been possible.

Umang Sharan

Virat Agarwal

Certificate

This is to certify that the project titled “Parallel Algorithms for the Positive Linear

Programming Problem” being submitted by Umang Sharan, entry number 2002142 and

Virat Agarwal, entry number 2002144 to the Department of Computer Science & Engi-

neering, Indian Institute of Technology, Delhi in the year 2006, as a partial fulfillment of the

requirement for the degree of Bachelors of Technology, in Computer Science & Engineering

is a record of bonafide work carried out by them under my supervision. The results obtained

in this report have not been submitted to any other institution for the award of any other

degree or diploma.

Dr. Naveen Garg

Department of Computer Science and Engg.

Indian Institute of Technology, Delhi

Abstract

We introduce a fast parallel approximation algorithm for solving the Positive Linear
Programming Optimization Problem, i.e. the special case of linear programming prob-
lem where the input constraint matrix and constraint vector consist of positive entries.
Papadimitriou and Yannakakis initiated the study of such problems in a framework of
solving positive linear programs by distributed agents. We take their model further and
turn attention to the trade off between the running time and the quality of the solution.
Our algorithm draws from techniques developed by Bartal, Byers & Raz [1], Garg &
Konemann [2], Luby, Nissan [4] with the intention to achieve maximum parallelization
to get a faster algorithm.

1

Contents

1 Introduction 4

2 Model 5

3 Previous Ideas 7
3.1 Bartal, Byers & Raz . 7
3.2 Garg & Konemann Packing LP . 8
3.3 Luby & Nissan . 9
3.4 Rajgopalan & Vazirani . 10

4 Our Work 12
4.1 Voting and Threshold Based Approach 12
4.2 Our Algorithm . 13

4.2.1 Claim 1: Initially, α ≤ n.OPT 16
4.2.2 Claim 2: The Algorithm takes O(log n/ε) phases 16

5 Conclusion 17

2

List of Figures

1 Model for PLPP . 5
2 General Positive Linear Program . 6
3 Algorithm LP() . 7
4 Luby Nissan LPP . 9
5 Algorithm PLP() . 10
6 PARALLEL SETCOV Algorithm . 11
7 Threshold based column selection . 13
8 NVU Algorithm . 15

3

1 Introduction

The positive linear programming optimization problem is the special case of the linear
programming optimization problem where the input constraint matrix and constraint
vector consist entirely of non-negative entries. We introduce an algorithm that takes
as input the description of a problem and an error parameter ε and produces both
a primal feasible solution and a dual feasible solution, where the values of these two
solutions are within a (1 + ε) multiplicative factor of each other. Because the optimal
values for the primal and dual problems are equal, this implies that the primal and
dual feasible solutions produced by the algorithm have a value within ε (with respect
to relative error) of an optimal feasible solution.

Achieving a global goal based on local information only is one of the key challenges
when developing fast parallel and distributed algorithms. In k rounds of communica-
tion, a network node can only gather information about nodes which are at most k
hops away. Not surprisingly, many global criteria such as obtaining a spanning tree
cannot be met by a local algorithm i.e. by an algorithm whose time complexity is much
smaller than the diameter of the network graph or even constant. But what can be
computed locally? In a seminal paper, over a decade ago, Naor and Stockmeyer posed
this question which is fundamental for the theory of distributed computing.

In a parallel environment, the main issue is not the round of communications but
the running time required. Let m be the number of constraints and n be the number
of variables. Then our algorithm can be implemented on a parallel machine using O(m
+ n) processors with O(log(m + n)/ε) phases.

Packing and Covering problems [?] that can be formulated as linear programs us-
ing only non-negative coefficients and non-negative variables. Covering and packing
problems [?] occur in a number of distributed applications. For Covering, the most
prominent problem is of finding dominating sets (DS). A DS is a subset of the nodes
of a graph such that for all nodes v, either v or a direct neighbor of v are in the DS. In
computer networks, it is often desirable to have a DS in order to enable a hierarchical
structure where members of the DS provide a service to their neighbors. A particular
application can be found in the context of mobile ad-hoc networks. Mobile ad-hoc net-
works consist of wireless devices communicating without a stationary infrastructure.
In order to improve the efficiency of flooding in particular and routing in general, it
has proven beneficial to maintain a clustering. Routing is then carried out on the level
of clusters. Usually, a clustering is obtained by computing a DS or one of the many
variants such as a k-dominating set.

Positive linear programs are strong enough to represent several combinatorial prob-

4

lems. The first example is matching in a bipartite graph. From matching theory
we know that relaxing the 0,1 program that defines the largest matching to a linear
program does not change the optimal value. This program is positive, thus PLPP
algorithm can be used to approximate the size of the largest matching in a bipartite
graph.

The second example is that of a set-cover. In this case it is known that relaxing
the 0-1 program that defines the minimum set cover to a linear program can decrease
the optimum value by at most log(δ) factor, where δ is the maximum degree of the set
system. This program is again positive and thus can solved by the PLPP algorithm
to produce a solution with approximation (1 + ε) log(δ). A (1 + α) approximation
algorithm for fractional set cover problem is discussed in [?].

Previously, Ptolkin, Shmoys, Tardos have developed fast sequential algorithms for both
the primal and dual versions of the PLPP. Though they introduce algorithms that are
simple and efficient but they don’t have fast parallel implementations.

2 Model

We consider the following model given by Papadimitriou and Yannakakis in which
distributed agents generate approximate solutions to positive linear programs in the
following standard form:

PRIMAL DUAL

maxX =
∑n

j=1 xj min Y =
∑m

i=1 yi

∀i,
∑

j aijxj ≤ 1 ∀j,
∑

i aijyi ≥ 1

∀j, xj ≥ 0 ∀i, yi ≥ 0

∀i, j, aij ≥ 0 ∀i, j, aij ≥ 0

Figure 1: Model for PLPP

We associate a primal agent with each of the n primal variables xj and a dual agent
with each of the m dual variables yi. Each agent is responsible for setting the value of
their associated variable. For any i,j such that aij > 0, we say that dual agent i and
primal agent j are neighbors. By this definition, dual agents are neighbors of primal
agents and vice versa.

In general however, positive linear programs are represented as:

5

maxX =
∑n

j=1Bjxj

∀i,
∑

j a
′
ijxj ≤ Ci

∀i, j, a′
ij ≥ 0

Figure 2: General Positive Linear Program

Clearly, this positive linear program can be converted to standard form by the local
operation aij = a

′
ij/BjCi. Another assumption that we make on the LP is that it

is given to the algorithm in normalized form in which the aij are either 0, or satisfy
1/γ ≤ aij ≤ 1. One can convert a problem in standard form to the normalized form sim-
ply by dividing all the constraints by amax = max aij , thereby setting γ = amax/amin,
(where amin = min aij s.t. aij > 0).

We focus on a PRAM model for parallelization. Parallel Random Access Machine
(PRAM) is a popular model for writing parallel algorithms. It consists of a number
of processors that have a common, shared memory. A parallel program is not very
different from a sequential (imperative) program, but there is a special ”for i pardo Pi”
structure that allows for parallel execution of subprograms. A (n,m) PRAM consists
of n processors and m memory locations where each processor is a Random Access
Machine (RAM). All processors share the same memory and communicate through it.
Computation proceeds in synchronized steps. During each step a processor may read
an element from the shared memory to its local memory or may write an element from
its local memory to the shared memory. Alternatively, it can perform an operation to
locally held data. No processor will proceed with instruction i+1 before all other pro-
cessors complete the i-th step. PRAM is a very simple model of parallel computation
that helps algorithm designers to focus in the essence of parallelism.

As mentioned earlier, our program consists of n primal and m dual agents. Each
agent is responsible for setting the value of its associated variable. We say that x is
primal feasible if x satisfies all the constraints. Opt(x) is a primal feasible solution s.t.,

sum(Opt(x)) = maxx∈S sum(x)
where S is {x|x is primal feasible}

We say that y is dual feasible if y satisfies all the constraints. Opt(y) is a dual feasible
solution s.t.

sum(Opt(y)) = miny∈S′ sum(y)
where S

′
is {y|y is dual feasible}

6

3 Previous Ideas

3.1 Bartal, Byers & Raz

Bartal’s algorithm for approximating the solution of PLPP runs in phases, maintaining
that at the end of each phase both primal and dual are feasible. The model used by this
algorithm is the same as what we have described above. For all non zero aij , primal
agent j is connected to dual agent i. Primal and dual agents are associated to primal
and dual variables respectively. Throughout the algorithm, the values of xi (dual) are
dependent on the values of the neighboring yj (primal) by exponential weighting func-
tion : xi = eλiφ/ψ, where ψ is depends on the current phase and φ is chosen according
to the approximation ratio, and λi is the value of the primal constraint. The proce-

Algorithm LP() {
call Initialize()
repeat until (ψ > ψf)

call Round-Update()
repeat until (minj αj ≥ 1)
∀j, if (αj < 1) then yj = yj(1 + ε/φ)
call Round-Update()

}
ψ = ψ(1 + ε)

}
∀j, output yj

}

Figure 3: Algorithm LP()

dure Initialize() is used to initialize the values of ψf , ψ, yj , φ. αj is the value of the
dual constraint. Before the end of each phase the value of ψ is scaled up by a factor of
1 + ε, due to which some dual constraints are violated (corresponding to some primal
variables). During the execution of the phase these primal variables are incremented
and corresponding dual values modified (using Round-Update), till the time all dual
constraints are satisfied. The algorithm proceeds for a fixed number of phases at the
end of which we have a 1 + ε approximate solution to the PLPP.

Intuitively, at the beginning of each phase the primal variables (corresponding to the
dual constraints) which get selected are the ones whose length is less (or the value of
dual constraint is less). These primal variables have lengths lying between 1

(1+ε) and
1. One may also think that it makes sense to increment the values of these primal

7

variables as increments in them will have minimal affect in the values of the primal
constraints at the same time incrementing the objective function.

The algorithm runs in O(lnn/ε2) phases - these iterations are fixed and are depen-
dent on the initial value of ψ and final value ψf . The number of iterations in each
phase is O(ln2 n/ε). Thus, the algorithm runs in time O(ln3 n/ε3).

3.2 Garg & Konemann Packing LP

The problem considered here is the general Packing Positive Linear Programming Prob-
lem.

Packing Problem

max cTx

Ax ≤ b
x ≥ 0

where A, b, c are (mXn), (mX1), (nX1) matrices having all entries positive and A(i, j)
is atmost bi. The dual of this problem is,

Covering Problem

min bT y

AT y ≥ b
y ≥ 0

The algorithm proceeds in iterations, where in each iteration length of each primal
variable is calculated as

lengthy(j) = Σi
A(i,j)y(i)
c(j)

Intuitively, primal variable for which the length is minimum (call is q) should be cho-
sen in each iteration. This is because for this variable primal column evaluates to
minimum which means that incrementing this variable will cost minimal increase in
the values of primal constraints. Also, cost coefficient of this variable is high so that
increase in this variable will result in high increase in value of primal objective function.

The maximum amount of increment in this primal variable is dependent on the mini-
mum capacity edge i.e., row for which b(i)/A(i, j) is minimum. Call this row p. The
chosen primal variable is then incremented by an amount b(p)/A(p, q) and its dual
neighbors are modified as,

8

y(i) = y(i)(1 + ε
b(p)/A(p,q)
b(i)/A(i,q))

No dual variable is incremented by a factor greater than (1 + ε). Also the pth dual
variable is incremented by a factor exactly (1 + ε). This is where the approximation
ratio is bounded by (1 + ε).

The algorithm runs till the value of the dual objective function becomes greater than
1. The time complexity of the algorithm includes the number of iterations till atleast
one variable becomes (1 + ε)/b(i). This value is multiplied by m to account for the
worst case when a whole cycle of dual variables occurs (variables that get incremented
by (1 + ε)) before a variable is chosen again.

On the basis of this algorithm we had an intuition that if we can choose more number of
primal variables and correspondingly more number of dual variables in each iteration,
maintaining the incremental constraints (to preserve analysis), we can achieve a better
running time with the same approximation ratio.

3.3 Luby & Nissan

Luby and Nissan give a fast parallel approximation algorithm for the linear program-
ming problem in special form which has been the basis for further work in the same
area. They give an algorithm which runs on a parallel machine using O(N) proces-
sors with a running time polynomial in log(N)/ε where N is the number of non zero
coefficients associated with an instance of the problem. The input, in special form, is
given as: For all (i, j), the input aij is such that either aij = 0 or 1/γ ≤ aij ≤ 1, where
γ = m2

ε2
.

PRIMAL DUAL

maxZ =
∑

i zi min Q =
∑

j yj

∀j,
∑

i aijzi ≥ 1 ∀i,
∑

j aijqj ≤ 1

∀i, zj ≥ 0 ∀j, qi ≥ 0

Figure 4: Luby Nissan LPP

Given a problem instance in the special form, the algorithm developed by Luby &
Nissan has the following properties:

τ = min{sum(z):z is primal feasible} = max{sum(q):q is dual feasible}

On input ε >0 and aij , the output is a primal feasible solution

9

z=(z1, ..., zn)

and a dual feasible solution

q=(q1, ..., qm)

such that

sum(z)≤sum(q)(1+ε)

Since sum(z)≥ τ ≥sum(q), this implies that sum(z)≤ τ(1+ε) and sum(q)≥ τ/(1+ε).

Algorithm PLP() {
(x1, ..., xn)←0
∀j, αj =

∑
i aijxi, α = minj{αj}, yj = e−α

∀i,Di =
∑

j aijyj , D = maxi{Di}, B = {i : Di = D}
repeat forever {
∀i ∈ B, ↑ xi in the direction which makes Di ↓ at the same rate

}
∀i, zi ← xi/α and ∀j, qj ← (yj)opt/Dopt

output zi and qj
}

Figure 5: Algorithm PLP()

The algorithm computes the (1+ε) approximation to the actual solution in

O(log(n)log(m/ε)
ε4

)

iterations. Each iteration can be executed in parallel using O(N) processors in time
O(log(N)) on a EREW PRAM where N is the number of entries (i,j).

3.4 Rajgopalan & Vazirani

Given a universe U , containing n elements, and a collection S = {Si : Si ⊆ U}, of
subsets of the universe, each associated with a cost cS , the set cover problem asks for
the minimal cost subcollection that covers all the elements of the universe. Set cover
problem is shown to be a NP-Complete problem by Karp’s Seminal Paper. This paper
presents a RNC3, O(log n) approximation algorithm for the set cover problem.

In the greedy approach set S such that minS{
cS
|U(S)|} is added repeatedly to the set

cover, where |U(S)| is the number of uncovered elements of the set S. cost(e) is the
cost of covering e by the greedy algorithm. Thus, if e was first covered by set S, then

10

cost(e) = cS
|U(S)| at the time set S was chosen. The set cover problem can be viewed as

a primal covering problem,

Covering Problem

min ΣcSxS

ΣS3exS ≥ 1
xS ≥ 0

Define value(e) = minS3e
cS
|U(S)| . In the greedy algorithm cost(e) = value(e) at the

time an element is covered, and it chooses to add the set for which Σe∈U(S)value(e) =
cS . The greedy algorithm approximates the optimum by a factor of Hk, where k is the
size of the largest set.

In the parallel approach what is needed is to relax the set selection criteria with-
out significantly affecting the approximation ratio. In this algorithm cost effective sets
are identified by choosing those that satisfy the inequality,

Σe∈U(S) value(e) ≥ cS/2

PARALLEL SETCOV

PreProcess.

Iteration:
For each uncovered element e, compute value(e).
For each set S: include S in L if

(.) Σe∈U(S) value(e) ≥ cS/2
Phase:

(a) Permute L at random.
(b) Each uncovered element e votes for the first set S (randomly) s.t. e ∈ S.
(c) if Σe votes Svalue(e) ≥ cS/16, S is added to the set cover.
(d) If any set fails to satisfy (.) then that set is removed from L.

Repeat until L is empty.
Iterate until all elements are covered.

Figure 6: PARALLEL SETCOV Algorithm

The PARALLEL SETCOV satisfies the parsimonious accounting property with µ = 16.
If we choose cost(e) = 16*value(e) if e votes for S and S is added to set cover in the same

11

phase, then Σe cost(e) ≥ (cost of cover), thus the approximation ratio remains O(Hk).

The algorithm advances in phases maintaining that in every subsequent phase the
minimum value advances by atleast a factor of 2. By evaluating the lower and upper
bounds on the minimum value after preprocessing, number of phases is atmost O(log n).

Call a set-element pair (S, e), e ∈ U(S) good if deg(e) ≥ deg(f) for atleast three
quarters of elements in U(S). By probabilistic analysis, if e votes for S then the proba-
bility that f votes for S is greater than 1/2 (this is due to the randomization step of L).
This implies that is (S, e) is good then S should receive a lot of votes if e votes for S.
By further analysis, it is shown that if (S, e) is good, e votes for S then with probability
(1/15) S is picked. To find the number of iterations, the expected decrease in uncov-
ered element set pairs (φ) is found. This comes out to be 1

15(no of good (S, e) pairs).
Since a quarter of total (S, e) pairs are good, the decrease in φ is 1

60φ. Thus, the
number of iterations is O(log nm) where initially φ = nm. The algorithm runs in time
O(log n log nm log nmR), where R is the largest set cost in bits.

In the next section, we try to model the voting technique described in this paper
for the general Packing PLPP. We try to present a voting scheme based on a threshold
to choose primal columns during each iteration whose value is to be incremented. We
also introduce a notion of good primal columns satisfying the length threshold.

4 Our Work

In this report, we introduce a new approach for solving general Packing Positive Linear
Programming Problems. We worked on several strategies based on the intuition devel-
oped while reading papers related to Linear Programming Problems. We also worked
on analysis to see if our intuition matched theoretical proofs. We present below some
of our ideas towards solving general packing PLPPs. While the first section gives two
techniques towards modeling the Garg & Konemann [2] algorithm in a distributed en-
vironment, in the latter section we present an independent algorithm towards solving
a PLPP in a parallel environment.

4.1 Voting and Threshold Based Approach

We adopted this approach while reading Rajgopalan & Vazirani’s Paper on Primal-
Dual RNC Approximation Algorithms for the Set Cover and Covering Integer Programs
[5]. The main idea is to parallelize the minimum operation and let the columns select
themselves locally based on a minimum number of votes it receives from its neighbors
in any round. Hence, if a primal node receives a stipulated number of votes then
it is selected otherwise not. The voting criteria works as follows: Each primal node

12

computes its length and broadcasts it to its neighbors. The dual neighbors then vote
for the top n/4 of their neighbors giving mn, mn−1 and so on votes in ascending order
of primal lengths and broadcasts these to the respective primal nodes. Each primal
node then sums the total number of votes it received in a particular round and if it is
greater than some threshold V then it updates its value and the values of OF and dual
neighbors accordingly.

y ← δ/bi
D(0)← m.δ
x← 0
Algorithm ThresholdLP()

while (D(t) < 1) {
α(yt) = (length)yt

foreach i s.t. αi < T
fk = fk−1 + cq bp

Apq

yj = yj (1 + ε 1
columns selected

bp/Apq

bj/Ajq
), ∀j ∈ N(i)

}
T = T*(1 + ε)

}

Figure 7: Threshold based column selection

Similarly in the threshold based approach, each primal node calculates its length and
picks itself if the length is less than some threshold T. The dual variables are then up-
dated using normalized increments based on the total number of primal nodes selected
in a round.

We implemented the threshold based algorithm (source code available in APPENDIX)
to check for the feasibility of results because we found the threshold values in both
techniques to be highly problem specific and we couldn’t get a problem independent
algorithm for the PLPP.

4.2 Our Algorithm

Both of the above techniques involved constants that were problem specific and hence
time bounds independent of the input were not possible. Hence we propose a new
approach for solving the PLPP. We modify the packing LPP as follows,

13

Primal Problem

max cTx

Ax ≤ 1
x ≥ 0

This problem can be rewritten as,

Primal Problem

max α

cTx ≥ α
Ax ≤ 1
x ≥ 0

On further analysis, since yi ≥ 0

Ax ≤ 1

⇔ aT
i x ≤ 1 ∀i, 0 ≤ i ≤ m

⇔ yia
T
i x ≤ yi ∀i, 0 ≤ i ≤ m

⇒ Σiyia
T
i x ≤ Σiyi

⇔Σiyia
T
i x

Σiyi
≤ 1 ≤ cTx

α

⇔ α
Σiyi

≤ cTx
ΣiyiaT

i x

⇔ α
Σiyi

≤ c1x1+...+cnxn

y1(aT
1 x)+...+ym(aT

mx)

⇔ α
Σiyi

≤ c1x1+...+cnxn

(a1y)x1+...+(amy)xn
≤ maxj

cj
Σiaijyi

⇔ minj
Σiaijyi

cj
≤ Σiyi

α

In the algorithm proposed by Garg & Konemann [2], recall that length of a primal
variable was calculated using,

lengthj =
Σiaijyi

cj

In the above analysis, it is clear from the last equation that the minimum of all primal
lengths is less than Σiyi

α . Here we try to achieve parallelization by choosing all primal

14

variables whose length is less than or equal to this quantity in a phase, and increment
their values till this condition is no more satisfied. At this point we end the phase and
decrement the value of α.

x← ε
α← n.OPT
y ← 0
Algorithm NVU()

while (Σiyi

α ≤ (1 + ε)) {
(length)j = Σiaijyi

cj

while([S = {j : (length)j ≤ Σiyi

α }] 6= φ) {
colnew =

∑
j∈S Ajxj

φ = max∀i
(colnew)i

bi

call Round Update()
}
α = α

1+ε
}

Round Update()

xj = xj(1+ ε
φ), ∀j ∈ S

λi = Σjaijxj , ∀i
yi = eελiφ

lengthj =
Σiaijyi

cj
, ∀j

Figure 8: NVU Algorithm

Working on the lines of Bartal [1] we have proposed a multiplicative increment (1+ ε
φ)

in the primal values as against additive increment proposed by Luby & Nissan [4] and
Kuhn [3]. Further, the increments in the primal variables are done by composing the
new primal column as a weighted sum of the chosen primal columns and choosing the
incrementing factor φ as the maximum ratio of bi and (colnew)i.

Recall from Garg & Konemann [2] that after choosing the primal variable whose length
is minimum we choose the maximum capacity edge (dual variable) which gets incre-
mented exactly by a factor of (1 + ε). In our approach when we choose many primal
variables, it is possible that the maximum capacity edge for several primal variables
may overlap. Thus, if we construct a new column as a linear combination of the primal

15

columns chosen we are able to exhibit the property that if for several primal columns
maximum capacity edge is the same then in this new column for this edge the prop-
erty is strengthened. Also, intuitively the primal variable having less length should be
having high value - so while constructing the new column more weightage should be
given to the primal columns whose length is less and this is covered by the weights we
have chosen.

The algorithm is based upon the following claims:

4.2.1 Claim 1: Initially, α ≤ n.OPT

For each row (ith row) choose the first variable from [1...n], which is already not covered
and for which the coefficient in this row is non-zero. Let this be the jth variable, then,

xj = bi/Aij

Assign each remaining primal variable to 0. At the end of this process,

α = Σjcjxj

In other words, we are taking the corner points of the polytrope described by the input
constraint matrix such that each corner point lies on an axis. The value of α calculated
this way is certainly more than the optimum value, as the value of each constraint(i)
in the primal problem is atleast bi. Also, value of each cjxj ≤ OPT . Thus,

OPT ≤ α ≤ n.OPT

4.2.2 Claim 2: The Algorithm takes O(log n/ε) phases

At the end of each phase we decrement the value of α by a factor of (1 + ε). As α is
no more than n times the value of the optimal solution,

no. of phases ≤ log(1+ε) n

Thus, the number of phases is atmost log(1+ε) n, i.e., O(log n/ε).

Recall from Bartal’s Algorithm [1] that primal variables having lengths in the slot
(1
1+ε) and 1 were chosen in a phase and the phase ended when all the lengths had

crossed this slot. In Luby & Nissan [4] also, a similar approach was followed. We no-
tice in our algorithm that this criteria of slot of (1+ ε) length has been relaxed to cover
all primal variables whose length satisfy the threshold criteria. Using this threshold
criteria it is easy to see that the primal variables that are chosen are no more restricted
to the (1 + ε) slot, because the slot has expanded. This is due to the fact that during
the beginning of a phase the slot is of length exactly (1 + ε) but as the phase proceeds
this threshold increases to cover more primal variables that may not be initially chosen

16

at the starting of the phase. Thus, we can claim that in our approach more number of
primal variables are chosen during each phase and thus the end criteria is satisfied in
less number of rounds.

5 Conclusion

We studied the problem of getting the optimal primal and dual solutions to positive
linear programs in a parallel environment. We gave an algorithm which obtains a (1+ε)
approximation ratio in a polylogarithmic number of rounds. Though we have not been
able to give a bound on the number of iterations within a phase, we believe that the
number of iterations would not exceed a polylogarithmic function in n as the algorithm
follows techniques suggested by Luby, Nissan [4] and Bartal [1]. Yet, many theoretical
and practical questions remain open.

One obvious question is whether the running time can be improved? In his paper,
Neil Young [6] has posed an open problem of finding a parallel algorithm for solving
PLPP whose running time has ε−2 instead of ε−4. Another interesting theoretical ques-
tion is the scope of this algorithm such as whether it can be applied to non-negative
LPs. Finding fast sequential approximation algorithms for general linear programs
could be a start in this direction.

17

References

[1] Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local
information with applications to flow control. In IEEE Symposium on Foundations
of Computer Science, pages 303–312.

[2] Naveen Garg and Jochen Konemann. Faster and simpler algorithms for multi-
commodity flows and other fractional packing problems. In IEEE Symposium on
Foundations of Computer Science, pages 300–309.

[3] Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set
approximation. In PODC ’03: Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 25–32, New York, NY, USA, 2003.
ACM Press.

[4] Michael Luby and Noam Nisan. A parallel appximation algorithm for positive linear
programming. In ACM Symposium on Theory of Computing, pages 448–457, 1993.

[5] Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual rnc approximation algo-
rithms for set cover and covering integer programs. 28(2):525–540, 1999.

[6] Neal Young. Sequential and parallel algorithms for mixed packing and covering. In
FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations of Computer
Science, page 538, Washington, DC, USA, 2001. IEEE Computer Society.

18

APPENDIX

We had tried two techniques for giving priorities to certain columns and rows using
Thresholding and Ranking based techniques. We present herewith the source code for
the two techniques.

#include iostream.h
#include fstream.h
#include string.h
#include math.h

float A[2][2] = {{1.0,1.0}, {2.0,1.0}}, b[] = {8.0,10.0}, c[] = {4.0,3.0};
float epsilon, delta, OF = 0.0, y[3], x[4], D, threshold;
int n = 2, m = 2, check, yyyyu;
int count[4] = {0,0,0,0};

void update D()
{

D = 0.0;
for (int i = 0;i < m;i++)

D += b[i]*y[i];
}

int main()
{

int i,j, numr = 0, check;
epsilon = 0.013;
delta = (1.0 + epsilon)*pow((1.0 + epsilon)*m, -1.0/epsilon);
threshold = 1.0*delta*m/4.0*10.0;
for(i = 0;i < m;i++)

y[i] = delta/b[i];
for(i = 0;i < n;i++)

x[i] = 0;
update D();
while(D <= 1.0)
{

int q[n];
float min length;
int p;
int k = -1;
for(j = 0;j< n;j++)
{

19

float temp = 0.0;
for(i = 0;i < m;i++)

temp += A[i][j]*y[i]/c[j];
cout<<j<<” ”<<temp<<” ”<<threshold<<endl;
if(temp < threshold)

q[++k] = j;
}
cout<<k<<endl;
int yy = k + 1;
if(k==-1) yyyyu++;
++count[k];
for(j = k;j>=0;j- -)
{

min length = 1000000.0;
for(i = 0;i < m; i++)

if(b[i]/A[i][q[j]] < min length)
{

min length = b[i]/A[i][q[j]];
p = i;
}

x[q[j]] += (b[p]/A[p][q[j]]);
OF += c[q[j]]*(b[p]/A[p][q[j]]);
for(i = 0;i < m;i++)

y[i] *= (1 + (epsilon)*((b[p]/A[p][q[j]])/(b[i]/A[i][q[j]])));
}
for(i = 0;i < m;i++)

cout<<y[i]<<” ”;
cout<<endl;
if(yy != 0)

threshold *= (1 + 1.25*epsilon);
else

threshold *= (1 + 1.25*epsilon);
update D();
++numr;

}
float as = log ((1 + epsilon)/delta)/log(1 + epsilon);
cout<<endl<<x[0]/as<<” ”<<x[1]/as<<” ”<<x[2]/as<<” ”<<x[3]/as<<endl;
OF /= log ((1 + epsilon)/delta)/log(1 + epsilon);
cout<<”OF = ”<<OF<<” number of rounds = ”<<numr<<endl;
cout<<”Expected rounds = ”<<(m/epsilon)*(log(m)/log(1 + epsilon))<<endl;
cout<<count[0]<<” ”<<count[1]<<” ”<<count[2]<<” ”<<count[3]<<endl;

20

cout<<yyyyu<<endl;
}

The code given above is based on a modified ranking plus thresholding system for
parallelising the Garg & Konemann [2] algorithm. Since the algorithm is based on
problem specific constants like the constraint vector and the constraint matrix entries,
hence calculating a threshold globally and independent of the input problem is not
straighforward. We used the above code to determine the constant by solving several
PLPPs using it but a single threshold factor could not be determined.

21

